

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A METHODOLOGY FOR DEVELOPING TIMING
CONSTRAINTS FOR

THE BALLISTIC MISSILE DEFENSE SYSTEM

by

Michael H. Miklaski
Joel D. Babbitt

December 2003

 Thesis Co-Advisor: Man-Tak Shing
 Thesis Co-Advisor: James Bret Michael

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A Methodology for Developing
Timing Constraints for the Ballistic Missile Defense
System
6. AUTHOR(S) Michael H. Miklaski and Joel D. Babbitt

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

The Department of Defense (DoD) is developing a Ballistic Missile Defense System
(BMDS) based on a layered defense that employs complementary sensors, weapons and C2
elements integrated by software into a system-of-systems to engage and destroy threat
ballistic missiles through all phases of its flight. Inherent to the ultimate success
of the BMDS will be the timely execution of the kill chain process against threat
ballistic missiles.

In this thesis we will apply the Unified Software Development Process, utilizing
the BMDS as a case study, to investigate a means to identify and validate timing
behaviors and constraints of system-of-systems. In particular, we will examine the
information exchange needed for processors to share, collaborate, fuse, and distribute
sensor information in a distributed sensor network and utilize modeling and simulation
to provide insight into the timing aspects of interactions among subsystems comprising
a system-of-system. The case study will involve deriving and documenting system and
software requirements, developing a test-ready model for representing the timing
requirements, and then validating this model through the use of an OMNET++ simulation.
The simulation will then be used to provide feedback to further refine the system
requirements and the functional specifications of the subsystems.

15. NUMBER OF
PAGES

309

14. SUBJECT TERMS Software Engineering, System-of-Systems,
Ballistic Missile Defense System (BMDS), Sensor Fusion,
Collaborative Fusion, Modeling, Simulation, OMNeT++, UML-RT, Real-
Time Constraints, Software Requirements, Kill Chain, Timing
Requirements, Unified Software Development Process.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A METHODOLOGY FOR DEVELOPING TIMING CONSTRAINTS FOR
THE BALLISTIC MISSILE DEFENSE SYSTEM

Michael H. Miklaski

Commander, United States Navy
B.S., National University, 1987

Submitted in partial fulfillment of the

requirements for the degrees of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
and

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
DECEMBER 2003

Joel D. Babbitt

Captain, United States Army
B.S., Brigham Young University, 1995

Submitted in partial fulfillment of the

requirements for the degrees of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
MARCH 2004

Authors: Michael H. Miklaski

 Joel D. Babbitt

Approved by: Man-Tak Shing

Thesis Co-Advisor

James Bret Michael
Thesis Co-Advisor

Dan C. Boger
Dean, Department of Information Sciences

Peter J. Denning
Dean, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Department of Defense (DoD) is developing a

Ballistic Missile Defense System (BMDS) based on a layered

defense that employs complementary sensors, weapons and C2

elements integrated by software into a system-of-systems to

engage and destroy threat ballistic missiles through all

phases of its flight. Inherent to the ultimate success of

the BMDS will be the timely execution of the kill chain

process against threat ballistic missiles.

In this thesis we will apply the Unified Software

Development Process, utilizing the BMDS as a case study, to

investigate a means to identify and validate timing

behaviors and constraints of system-of-systems. In

particular, we will examine the information exchange needed

for processors to share, collaborate, fuse, and distribute

sensor information in a distributed sensor network and

utilize modeling and simulation to provide insight into the

timing aspects of interactions among subsystems comprising

a system-of-system. The case study will involve deriving

and documenting system and software requirements,

developing a test-ready model for representing the timing

requirements, and then validating this model through the

use of an OMNET++ simulation. The simulation will then be

used to provide feedback to further refine the system

requirements and the functional specifications of the

subsystems.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION.. 1

II. BMD OVERVIEW.. 7
A. INTRODUCTION 7
B. A BRIEF HISTORY OF BALLISTIC MISSILE DEFENSE 7
C. DIRECTION OF BMD 10
D. LEGACY SYSTEMS 12
E. SYSTEMS OF SYSTEM APPROACH 16

III. BMDS OPERATING ENVIRONMENT 19
A. INTRODUCTION 19
B. THE KILL CHAIN 21

1. Surveillance 22
2. Detection 22
3. Tracking................................... 23
4. Identification 24
5. Target/Engage 25
6. Assess..................................... 26

C. PHASES OF FLIGHT 27
1. Boost Phase 27
2. Midcourse 29
3. Terminal................................... 29

D. BMDS COMPONENTS 30
1. Sensors 31
2. Weapons 35
3. Command, Control, Battle Management, and

Communications (C2BMC) 37

IV. BMDS REQUIREMENTS SPECIFICATION 39
A. INTRODUCTION 39
B. VISION AND SOFTWARE REQUIREMENT SPECIFICATION

(SRS) DOCUMENTS 40
C. DESCRIPTION OF BMDS ARCHITECTURE................. 42
D. USE CASES....................................... 49

1. Use Case 1: Detect Potential Threat
Ballistic Missile. 51

2. Use Case 1.1: Generate and Transmit a Local
Track...................................... 54

3. Use Case 2: Cooperatively Track and
Classify Threat Ballistic Missiles.......... 56

4. Use Case 3: Cooperative Weapons Assignment . 59
5. Use Case 4: Engage Targets................. 62
6. Use Case 5: Assess Kill 64

E. CLASS DIAGRAM................................... 66
F. SYSTEM SEQUENCE DIAGRAMS (SSD)................... 66

 viii

V. BMDS MODEL... 69
A. INTRODUCTION 69
B. CONTEXT... 73
C. ASSESSMENT...................................... 74

VI. BMDS OMNET ++ SENSOR FUSION PROCESSOR (SFP) SIMULATION 77

VII. DISCUSION OF RESULTS 83

VIII. CONCLUSION...................................... 91
A. SUMMARY... 91
B. RECOMMENDATIONS. 91

APPENDIX A. GLOSSARY................................... 93

APPENDIX B. VISION DOCUMENT 113

APPENDIX C. SRS DOCUMENT 123

APPENDIX D. SYSTEM SEQUENCE DIAGRAMS (SSD)............. 133
A. SSD FOR HIGH-LEVEL BMDS USE CASE................ 133
B. SSD FOR USE CASE 1 & 1.1 133
C. SSD FOR USE CASE 2 134
D. SSD FOR USE CASE 3 134
E. SSD FOR USE CASE 4 135
F. SSD FOR USE CASE 5 135

APPENDIX E. UML-RT MODELS 143
A. SENSOR... 143
B. SENSOR CONTROLLING AUTHORITY 144
C. COMPETENT AUTHORITY 145
D. SENSOR FUSION PROCESSOR (SFP) 146
E. SFP’S SENSOR INTERFACE CAPSULE.................. 147
F. SFP’S TRACK FUSING CAPSULE 149
G. SFP’S COLLABORATIVE FUSING CAPSULE.............. 151
H. SFP’S TRACK LIST CAPSULE 153
I. SFP’S SENSOR NET INTERFACE CAPSULE.............. 155
J. SENSOR NET..................................... 156
K. SENSOR NET’S SFP INTERFACE CAPSULE.............. 158
L. SENSOR NET’S TRACK FILTER CAPSULE............... 160
M. SENSOR NET’S CUEING CAPSULE 162
N. SENSOR NET’S TRACK REGISTRY CAPSULE............. 164
O. SENSOR NET’S TRACK SERVER CAPSULE............... 165
P. SENSOR NET’S PEER/HIGHER INTERFACE CAPSULE 167
Q. SENSOR NET’S WEAPONS PLATFORM INTERFACE CAPSULE . 168
R. WEAPONS PLATFORM 170
S. BMC2... 171
T. WEAPON... 172
U. WEAPON NET..................................... 173

APPENDIX F. SIMULATION CODE 175

 ix

A. SFP SIMULATION CODE. 175
B. SENSOR NET SIMULATION. 207

APPENDIX G. SIMULATION DATA 269

LIST OF REFERENCES....................................... 285

BIBLIOGRAPHY .. 287

INITIAL DISTRIBUTION LIST 291

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. BMDS Kill Chain Function...................... 21
Figure 2. An Integrated, Layered Defense Against Missiles

of All Ranges 27
Figure 3. BMDS Sensor Diagram........................... 31
Figure 4. BMDS Interceptor Diagram. 35
Figure 5. Process of BMDS development 39
Figure 6. Distributed C2BMC Architecture. 42
Figure 7. High-Level BMDS Use Case...................... 50
Figure 8. Use Case 1 Diagram............................ 51
Figure 9. Use Case 2 Diagram............................ 56
Figure 10. Use Case 3 Diagram............................ 59
Figure 11. Use Case 4 Diagram............................ 62
Figure 12. Use Case 5 Diagram............................ 64
Figure 13. BMDS Class Diagram (After Ref. Conceptual

Framework Approach for Systems-of-Systems
Software Development)......................... 67

Figure 14. The Miracle 69
Figure 15. OMNet++ BMDS SFP Simulation. 77
Figure 16. SFP Track List Capsule Redesign 89
Figure 17. SSD for High-Level Use Case 136
Figure 18. SSD for Use Case 1 & 1.1..................... 137
Figure 19. SSD for Use Case 2........................... 138
Figure 20. SSD for Use Case 3........................... 139
Figure 21. SSD for Use Case 4........................... 140
Figure 22. SSD for Use Case 5........................... 141
Figure 23. Sensor UML-RT Diagram........................ 143
Figure 24. Sensor Controlling Authority UML-RT Diagram... 144
Figure 25. Competent Authority UML-RT Diagram 145
Figure 26. Sensor Fusion Processor UML-RT Diagram 146
Figure 27. Sensor Interface Capsule UML-RT Diagram 147
Figure 28. Track Fusing Capsule UML-RT Diagram 149
Figure 29. Collaborative Fusing Capsule UML-RT Diagram... 151
Figure 30. Track Capsule List UML-RT Diagram 153
Figure 31. Sensor Net Interface Capsule UML-RT Diagram... 155
Figure 32. Sensor Net UML-RT Diagram 156
Figure 33. SFP Interface Capsule UML-RT Diagram 158
Figure 34. Track Filter Capsule UML-RT Diagram 160
Figure 35. Cueing Capsule UML-RT Diagram 162
Figure 36. Track Registry Capsule UML-RT Diagram 164
Figure 37. Track Server Capsule UML-RT Diagram 165
Figure 38. Peer/Higher Interface Capsule UML-RT Diagram.. 167
Figure 39. Weapons Platform Interface Capsule UML-RT

Diagram 168
Figure 40. Weapons Platform UML-RT Diagram 170

 xii

Figure 41. BMC2 UML-RT Diagram.......................... 171
Figure 42. Weapon UML-RT Diagram........................ 172
Figure 43. Weapon Net UML-RT Diagram 173
Figure 44. Varying Data Rates and Track Message Sizes.... 271
Figure 45. Ground-based Radar Update Delay 272
Figure 46. Space-Based IR Update Delay 274
Figure 47. Varying Number of Ground-based Radar Sensors.. 275
Figure 48. Varying Number of Space-based IR Sensors...... 277
Figure 49. Collaborative Fusion Requests 278
Figure 50. Module Processing Time 280
Figure 51. Track List Access Time 281
Figure 52. Time to Perform Track Fusion 283

 xiii

LIST OF TABLES

Table 1. Varying Data Rates 269
Table 2. Varying Track Message Sizes 270
Table 3. Ground-based Radar Update Delay................. 273
Table 4. Space-Based IR Update Delay 273
Table 5. Varying Number of Ground-based Radar Sensors 276
Table 6. Varying Number of Space-based IR Sensors 276
Table 7. Collaborative Fusion Requests 279
Table 8. Module Processing Time 279
Table 9. Track List Access Time 282
Table 10. Time to Perform Track Fusion 282
Table 11. Master Track List Broadcast Times 284
Table 12. Capsule Data Rate............................ 284

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

CDR Michael Miklaski

I would like to express my undying love and gratitude
to my wife, Jane, who has always been stood by me in all my
endeavors providing support and a swift kick when
necessary, and to my children Jessica and Matthew, whose
mere presence is a constant reminder that I must be
continuously learning. Also, I will always cherish the not
so subtle reminders that if they had to do their homework I
had to do mine as well and the periodic comparison of
report cards to see who had the better grades (it wasn’t
me). I also wish to express a heartfelt “Thanks” to all
the Software Engineering and C4I professors, and in
particular Professors Michael and Shing, for their extreme
patience in attempting to impart their knowledge to an old
dog trying to learn new tricks.

CPT Joel Babbitt

My deepest thanks to God for everything, including my
meager modeling and programming skills. Thanks ever so
much to my wife, Kristen, for putting up with my work
ethic, for listening to much talk laced with many cryptic
terms, and for standing by me through this entire process.
Thanks to my boys, Xander and James, for giving up their
daddy ‘to the thesis monster’. Thanks to Professors Shing
and Michael for the MANY hours and constant dedication to
seeing our thesis through, and to Professor Bill Ray as
well for his programming assistance. Finally, thanks to
the many professors and fellow students here at Naval
Postgraduate School from whom I have learned so much.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

I keep six honest serving-men
(They taught me all I knew);
Their names are What and Why and When

And How and Where and Who.
I send them over land and sea,
I send them east and west;
But after they have worked for me,
I give them all a rest.
I let them rest from nine till five,
For I am busy then,
As well as breakfast, lunch and tea,

For they are hungry men.
But different folk have different views.
I know a person small --
She keeps ten million serving-men,
Who get no rest at all!
She sends 'em abroad on her own affairs,
From the second she opens her eyes --
One million Hows, two million Wheres,

And seven million Whys!
Rudyard Kipling, The Elephant's Child (1902)

The primary goal of our thesis is to continue the

development, refinement, and documentation of the high–

level requirement specification, baseline architecture, and

real-time model of a notional Ballistic Missile Defense

System (BMDS) that was started in earlier work.1 In

particular, our focus is to try to determine what the

potential timing constraints are on the BMDS we are

1 Dale Scott Caffall, “Conceptual Framework Approach for System-of-
Systems Software Developments” (M.S. Thesis, Naval Postgraduate School,
Mar. 2003)

2

developing. We then will create a high-level simulation of

the BMDS that can validate those derived requirements and

assess the timing constraints of the BMDS. This simulation

will also be designed such that it can be reused for

further research on the subject.

We intend to utilize establish software engineering

practices that have been the bedrock of our graduate

education to achieve these stated goals, and in particular

we will utilize the Unified Software Developmental Process

(USDP) to develop the BMDS. The USDP is a use case driven

incremental and iterative process consisting of five core

workflows (requirements, analysis, design, implementation,

and testing) and four phases (inception, elaboration,

construction, and transition).2 In being iterative and

incremental we can break the project down into smaller

parts to analyze, design, implement, and test, and to make

any necessary changes.

As has been observed in some software projects, those

practitioners who are doing the developing may have only a

limited insight, if any at all, into the product being

constructed. It is paramount that the developers gain a

fundamental understanding as part of the development

process. One needs to establish a solid foundation of

understanding of “what problem it was we were trying to

solve and why we are tying to solve it”3 by putting our

“honest men” to work and researching the problem.

Armed with a rudimentary knowledge of Ballistic

Missile Defense (BMD) and the systems that comprise it, a

host of software engineering classes, a development

2 Simon Bennett, John Skelton, and Ken Lunn, Schaum’s Outline UML,

McGraw-Hill, London, 2001, pp 20-21.
3 Professor Richard Riehle, Naval Postgraduate School, Jan. 2003.

3

process, and a profound quote from Kipling passed on to us;

we embark upon our journey of discovery.

The first issue at hand is the need to establish who

is driving the need for a BMDS, in essence who is the

customer, and why such a system is required: the answer

comprises Chapter II, in addition to a history of BMD,

answering why current systems cannot fulfill the future

needs of a BMDS, and the approach we intend take to achieve

the goals of our thesis.

Next we looked at what methodology the BMDS is to be

implemented and integrated, and how that system is

tactically envisioned to be employed in the prosecution of

threat ballistic missiles. We use a course-grain model of

BMDS in order to reason about what specific sensors,

weapons, battle manager, and command and control systems

are intended to comprise a BMDS system-of-systems. This is

done to gain a fundamental understanding into the required

functionality and overall system behavior. All of which

serve as the basic template as we continue development of

the BMDS. In essence, Chapter III becomes the requirements

elicitation phase of the software requirements

specification process.

The process of developing the requirements

specification and related documentation is the focus of

Chapter IV. We start by creating the vision and Software

Requirement Specification documents and describing the BMDS

architecture based on the information derived through the

requirements elicitation phase. This is followed by the

process of specifying the system requirements by utilizing

use cases to identify the who, what, and how of the BMDS

behavior. The use cases are then realized via

collaborations consisting of a static class diagram and

4

dynamic system sequence diagrams. From the use cases, the

BMDS class diagram from previous work is further refined

and expanded annotating the new derived classes,

attributes, and messages that occur between those classes

to statically describe the BMDS. System sequence diagrams

(SSD) are developed to show dynamic behavior of the BMDS

through the necessary communication between the classes and

objects of the BMDS via messages and the timeline in which

those messages must occur in order to realize successful

system operation in the prosecution of threat ballistic

missiles. From these artifacts we then develop a real-

time, high-level model that can start to identify the

actual timing constraints that will be imposed upon the

notional BMDS.

To make the transition from understanding the

requirements of the BMDS to the design and implementation

of the simulation we utilize a real-time variation of the

Unified Modeling Language, commonly referred to as UML-RT.

UML-RT is designed specifically to model the software

architectures of complex, event-driven, and distributed

real-time systems to ensure that the essential structural

and behavioral framework upon which all other aspects of

the system depend are designed correctly and can

accommodate changes over time.4 In developing the BMDS

model with UML-RT we will gain a better understanding of

the system-of-systems we are developing through

visualization, behavior and structure specification,

decision documentation, as well as creating a construction

template from which we can start to build a prototype of

the system to validate the derived requirements.

4 Bran Selic and Jim Rumbaugh, Using UML for Modeling Complex Real

Time Systems, April 1998, pp 2-3.

5

A simulation model is defined as:

An algorithmic representation of a system,
reflecting system structure and behavior, that
explicitly recognizes the passage of time, hence
providing a means of analyzing the behavior of
the system over time.5
In order to perform a system analysis of the BMDS

we will develop a OMNeT++ discrete event simulation of

the Sensor Fusion Processor as a model for simulating

the entire system, using the UML-RT model as a

template for incorporating system requirements based

on the documented artifacts. The simulation is used

to determine whether the requirements have been

achieved, that the system operates within acceptable

parameters, and to discover any other possible timing

considerations and constraints. The simulation is

designed to allow for further research and development

as the BMDS evolves.

5 Hassan Gomaa, Designing Concurrent, Distributed, and Real-Time

Applications with UML, Addison-Wesley, 2000, p 752.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BMD OVERVIEW

A. INTRODUCTION

The purpose of this chapter is to provide the reader a

background and insight into those factors that have driven

the need for the development of a BMD through a quick look

at the history of BMD and the current decisions being made

by the national leadership that have and will continue to

affect the development of the BMDS, in essence answering

the why and who. This is followed with a brief explanation

of why legacy systems cannot fill the bill for future BMDS

growth and why development of a new BMDS following a

system-of-systems approach is necessary.

B. A BRIEF HISTORY OF BALLISTIC MISSILE DEFENSE

On September 8th 1944, the quest for an anti-ballistic

missile defense system began in earnest to counter German

V-2 rockets launched against civilian targets in France and

England. Initially, the only means of defense against

these weapons of terror was to either locate and destroy

the launch sites or occupy sufficient territory as to place

the missiles out of range of civilian population centers.

However, the Germans simply moved these weapons to more

secure areas and continued to deploy them at targets within

the operational range of the missile. By the end of the

war it was determined that over 3000 V-2’s had been

launched with the majority of them targeted at London and

Antwerp. While militarily these weapons had little impact,

the political and psychological effects were significant.

Fortunately for the allies, the V-2 missiles were

expensive to build, its guidance system was not highly

accurate, the missile itself was unreliable, and the weapon

8

was introduced too late in the conflict to significantly

affect the outcome of the war. However, the V2 was a

harbinger of future warfare. With advances in missile

technology, weapons development to include all forms of

weapons of mass destruction (WMD), and more efficient and

less costly production of ballistic missiles, they became

quite an attractive means of bolstering the military

capability of a country without bankrupting the economy.

During the Cold War, the prospect of nuclear

annihilation via the exchange of Intercontinental Ballistic

Missiles (ICBM) between the U.S. and Soviet Union led to

the implementation of numerous arms limitations treaties;

the treaties placed constraints on the use of these weapons

and the platforms with which to deliver them. These

treaties themselves became a means of providing BMD in that

while technology was advancing for both sides it was not

mature enough to develop a comprehensive, integrated system

that could counter such a threat. Those systems developed

in the Cold War could only track the incoming warheads and

attempt to destroy the reentry vehicles (RV) in

endoatmospheric reentry phase with a nuclear defensive

missile, such as Nike/Zeus in the case of the U.S., while

conducting a nuclear retaliatory strike to prevent further

launches. The concept of mutual assured destruction (MAD)

served as much of a deterrent than any fielded defensive

system during the Cold War.

As technology advanced, particularly with lasers and

computers, the Reagan Administration pursued in earnest the

development a space-based national BMDS known as the

Strategic Defense Initiative (SDI), commonly referred to as

the “Star Wars” program. However, the ABM treaty signed in

1972, while allowing research, precluded actual testing or

9

deployment of such a system. These restrictions helped to

eliminate the fear that one side could possibly gain the

advantage of protecting themselves thus rendering the

adversary’s weapons impotent, and with that distinct

advantage possibly emboldening them to preemptively launch

a first strike safely in the knowledge that they could

repel a counter ballistic missile strike.

With the fall of the Soviet Union, the potential for

the use of ballistic missiles has actually increased. This

is primarily due to proliferation of Theater Ballistic

Missiles (TBM) to Soviet client states during the Cold War,

the selling of technology afterward by former Soviet

states, and the fact that the control leveraged over those

client states by Russia to keep them in line no longer

existed. This is evidenced by the proliferation of TBM in

Third World countries such as Iraq and North Korea that

possess Soviet-made missiles and using the technologies

acquired to develop homegrown TBM’s such as the No Dong I,

Taepo Dong I/II, and all variants of the SCUD, which

currently threaten the U.S. and her allies.

U.S. forces’ first real exposure to a TBM threat

occurred during Operation Desert Storm in which military

history was made with the first successful intercept of a

SCUD by a Patriot missile. On commencement of the

Coalition air war, Iraq commenced SCUD attacks against

targets in Saudi Arabia and Israel. While tactically

insignificant, the eighty-eight SCUD missiles that were

launched in the resulting terror campaign nearly drew

Israel into the conflict, which could have both unraveled

the Coalition and resulted in the loss of support from Arab

nations. It was following this campaign that a significant

amount of DoD focus was directed at the countering the

10

ballistic missile threat, and lead to the establishment of

the Ballistic Missile Defense Organization (BMDO), later

MDA, and the Joint Theater Air and Missile Defense

Organization (JTAMDO), who have been mandated to develop a

BMDS.

C. DIRECTION OF BMD

On December 13, 2001, President Bush announced to

Russia and the world that the United States, after reeling

from the devastating terrorist attacks of September 11 and

facing new threats since the end of the Cold War, in

particular rogue states and terrorist groups possessing WMD

and ballistic missiles with which to deliver them, was

serving the required six months prior notice necessary to

pull out of the Anti-Ballistic Missile (ABM) Treaty of

1972.6 This major decision has had a profound and dramatic

impact on the National Security Strategy of the U.S. and

has led to the direct and stated goal of developing a BMDS.

By pulling out of the ABM Treaty, the President has now

made it possible to fully develop and test BMD systems that

were previously restricted to research only and if capable,

to deploy those systems as desired.

In order to facilitate the development of a BMDS, just

two weeks after the President’s announcement, Secretary of

Defense Rumsfeld, in a memorandum dated 2 January 2002,

announced the restructuring of the entire National Missile

Defense (NMD) Program placing all programs under the

Missile Defense Agency (MDA): MDA, reports directly to the

Under Secretary of Defense for Acquisition, Technology and

Logistics (USD AT&L), and was provided guidance for the

6 http://www.whitehouse.gov, Press release 13 Dec. 2001.

11

development and employment of an integrated and layered

BMDS that will be able to

detect, track, intercept and defeat ballistic
missiles in all phases of their flight (i.e.,
boost, midcourse, and terminal) against all
ranges of threats.7

Additionally, the memo streamlined the acquisition process

for all related BMD systems by removing them from

constraining government instructions and directives,

allowing MDA to pursue a capabilities-based approach toward

BMD systems research, development, test and evaluation.

In an effort to make BMD a reality, President Bush

announced to the nation and the world,

I made a commitment to transform America’s
national security strategy and defense
capabilities to meet the threats of the 21st
century… I have directed the Secretary of Defense
to proceed with fielding an initial set of
missile defense capabilities. We plan to operate
these initial capabilities in 2004 and 2005, and
they will include ground-based interceptors, sea-
based interceptors, additional Patriot units and
sensors based on land, sea, and in space.8

By committing to field systems in an incremental fashion as

those systems are developed, the intent is to deploy an

initial system, which can be continuously modified and made

more robust over time.

In order to achieve these stated goals and critical to

the success of the implementation -- and both at the heart

of the BMD System and the evolving BMD Strategy -- is the

development and future employment of the Command, Control,

Battle Management and Communication (C2BMC) System. The

7 Office of the Secretary of Defense, SecDef Memo dated 2 Jan. 2002.
8 http://www.whitehouse.gov, Press release 17 Dec. 2002.

12

ability to detect, track, identify, and target threat

ballistic missiles in all phases of their flight and

provide weapons systems the accurate and timely information

necessary to consummate an intercept is the primary goal of

BMD.

D. LEGACY SYSTEMS

In this thesis we lay aside any restrictions imposed

by legacy systems, as the cost of upgrading them is

prohibitive and the restrictions they bring with them

without a complete upgrade would make the President’s long

term goal of defending the nation from ballistic missile

threats untenable. As such, we have striven to incorporate

the latest component-based system design methodologies to

provide for ease of system decomposition and evolution of

the system as threats, doctrine, and technology change.

However, these systems initially will need to be utilized

until a more robust and responsive system can be

implemented. Therefore, these legacy systems need to be

discussed; particularly with reference as to why they

cannot be improved upon to fulfill the future needs of the

envisioned BMDS.

Prior to Desert Storm, with the primary threat being

ICBMs stationed in the former Soviet Union, the BMD System

consisted of large, fixed radar sites in the northern

latitudes, and Defense Support Program (DSP) satellites in

geosynchronous orbits, scanning the predicted avenues of

approach of possible ICBM attacks and nuclear-tipped

defensive missiles poised to intercept incoming ICBM’s.

These systems were considered national assets and strategic

in nature, reporting directly to NORAD HQ at Cheyenne

13

Mountain, Wyoming, which in turn reported to the National

Command Authority (NCA) in Washington D.C.

BMD weapons-system development prior to Desert Storm

was not predicated on the possibility of having to conduct

integrated BMD at a tactical level, and therefore was not

optimized to perform that mission. In fact, most weapons

systems were developed in a “stovepipe” fashion that

necessitated significant modifications to existing software

systems or unique network designs to allow interoperability

within an established command and control (C2)

infrastructure. Each of the services have developed data

links that provided connectivity between their particular

units such as the Ground Based Data Link (GBDL) and Army

Tactical Data Link One (ATDL-1) for Army and Marine ground

units, the PATRIOT Digital Information Link (PADIL)

specifically designed for the PATRIOT system, and the

Navy’s Link-4A (TADIL-C) for two-way interceptor air

control. None of these data links have a direct means to

integrate with one another and must all be translated into

another C2 data link, such as Link-11 or Link-16, in order

to transmit and receive time-critical information and

achieve connectivity and interoperability.

Proliferation of smaller theater and tactical

ballistic missiles to Third World countries and the advent

of Desert Storm necessitated a change in the design of

weapons and C2 systems. During Desert Storm, the Coalition

forces developed and deployed a defensive system to counter

Iraqi SCUD missiles that are not much more sophisticated

than the German V-2 rocket. The theater-level air-defense

system consisted of sensor and weapon systems tied together

through a variety of previously mentioned legacy data link

systems in order to develop a coherent air picture. The

14

complexity of the architecture and the limitations of those

older data link systems required the coalition to develop

custom patches to attain a comprehensive defense. For

instance, initially Link-11 was implemented as a single

data link with all possible units participating. However,

as units joined the network and started to enter tracks the

shear volume of all the track data saturated many of the

participants who had relatively limited track file capacity

and prevented many critical contacts from being presented

in a timely fashion. To address this problem, multiple

Link-11 nets were established with gateway units filtering

data as necessary to preclude saturation.

While the aforementioned “fixes” worked to a limited

degree, latency due to the numerous translations among

disparate data links and communications systems, lack of

complete connectivity, and differing navigational data

precluded attainment of an accurate, near real-time C2

environment. This was evident by the minimum response time

available to the Patriot batteries in response to SCUD

launches during Operation Desert Storm despite early launch

detection by Defense Support Program (DSP) satellites.

Since the conclusion of Desert Storm, systems such as

the Cooperative Engagement Capability (CEC) and the Joint

Tactical Information Distribution System (JTIDS) have been

introduced to increase the throughput of data, enhance the

overall situational awareness of participating units, and

in the case of CEC’ providing a composite track picture

consisting of radar-parametric and identification data so

that units outside the detection range of a target can

actually launch on remote. These systems have been

utilized in operational and test and evaluation exercises

to develop an effective, recognizable air picture and are

15

anticipated to migrate into the arena of BMD. In fact,

Link 16/JTIDS has been identified as the initial C3 system

to integrate the BMDS with the potential to provide a

Single Integrated Air Picture (SIAP) for BMDS through CEC

sensor fusion. However, a recent study conducted by the

Naval Studies Board of the National Research Council found

that both of these systems would be inadequate in the long

run for a BMDS.

As previously described, the JTIDS/Link 16
approach is a bandwidth limited, rapidly
obsolescing technology that will impede future
operational flexibility. There are a variety of
planned improvements that may make it somewhat
more effective, and these should be continued as
planned. However, at each stage, the Navy should
evaluate the utility and cost of the improvements
against the evolving capability provided by the
Internet technology prototyping. The goal should
be to use JTIDS/Link 16 when nothing better is
available but to wean the BMC3 system from
depending on it.
CEC is an excellent implementation of the
philosophical approach advocated by the committee
in that it seeks to accommodate distributed
sensors. It provides the basis for the current
self-defense capabilities and gives the Navy some
area defense capability. It is, however, a
closed-loop system that will not provide the
long-term capabilities needed for a more complete
TMD BMC3.9

Therefore a new and more modern approach, using the

latest system and software engineering methodologies

available to integrate all of the subsystems that will

comprise the BMDS, needs to be undertaken to develop the

software for the follow-on BMC3 system. Inevitably,

“Software, not hardware, will determine the ultimate

9 Naval Studies Board National Research Council, Naval Forces

Capability for Theater Missile Defense, National Academies Press 2001,
p 162.

16

functionality of the system and the success of the system

in the end user’s hands…”10

E. SYSTEMS OF SYSTEM APPROACH

Dealing with systems of complexity requires
nontrivial approaches, and a system of subsystems
is a means to this end. Surely the alternatives
are worse, as we would end up with incredibly
complex systems that no one could possible
understand, with indeterminate behavior, and
design based on shared functionality, poor
partitioning, and threaded code in such a way as
could never be unraveled. … And what happens if
we don’t do a good job of systems engineering?
The system will become brittle and will resist
change because of the weight of the requirements
assets will “bind” us to the implementation. Our
subsystem requirements have taken control of our
design flexibility, and a change in one will have
a ripple effect in other subsystems. These are
the “stovepipes” systems of legend, and such
systems resist change. In their interfaces, the
problems may be worse. If the interfaces are not
properly specified, the system will be fragile
and will not be able to evolve to meet changing
needs without the wholesale replacement of
interfaces and the entire subsystems that were
based on them.11

As previously shown, current C3 systems, while

providing an initial capability to fulfill President Bush’s

mandate, will not be able to grow to meet the projected

demands nor take advantage of advances of current and

future commercial technology. The reality is that even as

JTIDS is being fielded, it has been in development for over

thirty years and has already become a legacy stovepipe

system with minimal room for future growth. One of the

major problems with JTIDS is that it requires significant

10 Dean Leffingwell, Don Widrig, Managing Software Requirements,
Addison-Wesley, 2000, p 63.

11 Ibid, p 65.

17

lead-time of about one to two weeks and foreknowledge of

the participating platforms in order to develop the network

with which to integrate those systems and distribute the

software to the units. CEC, which is outstanding at

developing a local SIAP, requires very specific equipment

and software to implement a sensor fusion network and does

not have the capacity to provide the complete set of data

that a tactical data link does.

In BMD scenarios it is not envisioned that a

sufficient amount of time will be available to configure a

JTIDS network rapidly enough to meet the threat or to

include whatever units that are available to operate

together in a cohesive manner to affect a proper defense.

Also, as systems are modified or developed over time they

must be able to participate in the network with a minimum

of overhead and impact, that is be plug-and-play, and

neither of these systems will be able to offer this

capability even after significant planned system evolution.

Continuing the process of systems-of-systems

development utilizing the BMDS as a case study12, we intend

to extend the study to the next level of realization by

utilizing established software engineering requirements

specification practices to further define the conceptual

system of systems and develop a network simulation based on

those findings in an attempt to capture the high level

timing constraints imposed upon the system. These will

later serve as a vehicle for continued study and refinement

of the conceptual system of systems and provide an initial

12 Caffall, D. S. and Michael, J. B. “A new paradigm for requirements
specification and analysis of system-of-systems”. Wirsing, M., Balsamo,
S., and Knapp, A., eds., Lecture Notes in Computer Science: Proc
Monterey Workshop 2002: Radical Innovations of Software and Systems
Engin. in the Future, Berlin: Springer-Verlag, 2003.

18

simulation of the network that can be expanded for

utilization in further research.

19

III. BMDS OPERATING ENVIRONMENT

A. INTRODUCTION

The Standish Group conducted a survey in 1994 to

determine what were the most common factors associated with

software projects that met with significant problems. One

of the three most commonly identified faults was incomplete

requirements specification.13 As part of the requirements

elicitation process for this project we need to determine

and understand under what paradigm or methodology the BMDS

is to be developed, what sub-systems are going to comprise

the BMDS, and how they are intended to operate together as

a system-of-systems. Once this information has been

determined the requirements specification process can be

documented and software design can commence which in turn

leads to identifying the timing constraints of the BMDS.

The purpose of this chapter is to provide the information

that is critical for identifying capabilities, functional

requirements, and non-functional requirements.

MDA has set clear expectations and guidelines under

which the BMDS Battle Manager (BM) is to be developed.

The BMDS BM will substantially enhance BMDS
effectiveness beyond that achievable by stand-
alone systems. The BM component integrates kill
chain functions (surveillance, detect / track /
classify, engage and assess) across the layered
defenses (boost, mid-course, terminal, and
external sensors (Space Based Infrared System Low
- SBIRS Low)) and evolves with the BMDS elements.
Initially, BM will deliver the hardware/software
(HW/SW) necessary to provide the means for
executing pre-planned responses by integrating
available information to provide the user with
increased automation capability and ability to
integrate information from increasingly diverse

13 The Standish Group, Charting the Seas of Information Technology,

1994.

20

resources. BM will eventually provide a highly
flexible and configurable framework for real
time, adaptive coordination of missile defense
assets, while also supporting the incorporation
of new elements.14

Each one of the functional areas in the kill chain and

phases of flight for a ballistic missile places unique

requirements on the overarching BMD system-of-systems, as

well as potential trade-offs among the non-functional

requirements (e.g., timing vs. safety) that need to be

addressed; each requirement has an impact on timing

constraints that need to be identified and evaluated.

Lastly, the types of systems that will comprise the BMDS,

sensors, weapons, and C2, will need to be evaluated to

determine what each of the timing requirements are in order

to ensure that when they are integrated as a system-of-

systems will operate effectively in the prosecution of a

ballistic missile threat.

14 MDA Exhibit R-2 RDT&E Budget Item Justification (PE 0603889C),

Feb. 2003.

21

1

Assign Weapon

BMDS Kill Chain Functions

Detect

Track

Evaluate Threat

Associate Track/
Correlation

Discriminate Identify Classify

Collect
Data

Formulate
Assessment

Planned
Search

Cued Search Acquire Detect

Prepare
for Launch

Flyout

Conduct
Endgame

Handover

Select
Aimpoint

Divert

Pair Weapon to Target
•Weigh Data
•Threat Evaluation
•Prioritize Threats

•Generate Tracks
•Correlate Local &
Remote Tracks
•Process non-organic
sensor data
•Maintain Track Files

•Ready Interceptor
•Ready Launcher
• Compute firing
solution

•IFTU
•Divert

•Compute intercept
point
•Discriminate

•Conduct Active Search
•Conduct Passive Search

Update Track
Amplifying Data•Apply features

recognition
•Debris
•Countermeasures
• Decoys
•Tank/Booster
•RV

Develop
IPP/LPE

•Position
•Velocity
•Covariance
•Sigma
•Missile Type
•RV Type

•Evaluate Impact Point Prediction
Against DAL
•Evaluate Weapon Kinematics
Constraints
•Evaluate Weapon Sensor/
Target Combinations
•Determine Optimum Engagement
Sequence

•Perform
discrimination
•Compare Features

Launch

•Receive Tracks
from other source
•Compute search
volume

•Process sensor data
•Initial filtering
•Develop initial track file

•Compare Profiles
•Trajectories
•Phenomenology
•RCS

•Points
•Ellipse

•TTL
•LTL

•Receive and Display
Track Data
•Synchronize to Ongoing
Tactical Situation

Maintain SA

Engage

•Assign Weapon/Sensor/Target
•Assign Backup

Acquire

Assess Kill

Direct Execution

v18

•Activate all
KV functions
•Begin search

•Fire thrusters
•Maneuver to
target

Release
Results

Figure 1. BMDS Kill Chain Function15

B. THE KILL CHAIN

The kill chain template (Figure 1) is utilized by

virtually every weapons system to describe its

functionality and to determine its effectiveness. As

mentioned in the previous quote, it is also a required

performance function of the BMDS and serves as the

foundation for the development of the use cases from which

the understandings of the BMDS requirements are to be

extrapolated.

15 Dale Scott Caffall, “Conceptual Framework Approach for System-of-
Systems Software Developments” (M.S. Thesis, Naval Postgraduate School,
Mar. 2003), p 20.

22

1. Surveillance

The process of surveillance requires that sensors

monitor specific geographic areas of interest for ballistic

missile launch events. This implies that a commander with

appropriate authority to direct the sensors that will

conduct the surveillance, in response to a potential

threat, has provided a specific queuing order or has

determined that an area of interest warrants consistent

monitoring based on high probability of an event occurring

in that specific region. For instance, an increase in

hostile rhetoric by a nation in possession of ballistic

missiles may require that assets be committed to monitor

specific regions to ensure that should a ballistic missile

event occur, it would be detected with a sufficient amount

of time to react accordingly. This is in contrast to

certain nations that are known to possess large quantities

of ballistic missiles, such as China or North Korea that

will, in all likelihood, require continuous surveillance.

The BMD system must manage all surveillance assets to

ensure that the right assets are looking where they need to

be and that there are sufficient assets for required

coverage.
2. Detection

Detection is critical to any BMD system; the bottom

line is that if you do not see the threat missile or know

that it is coming then you cannot defend against it. Once

a ballistic missile event has occurred and it has been

detected by a sensor system, the BMDS must assess that what

is actually being detected is in fact a ballistic missile

threat and if it is, whether or not there is already a

preexisting track or cueing message on that particular

contact in the network. If a contact is evaluated as a

threat ballistic missile and a preexisting track does not

23

exist, a new track must be developed and a queuing message

distributed as quickly as possible so that all other

participating IR and radar sensors can make their own

detection and start the tracking process of the missile in

flight. In doing this, the target’s position can be

refined through track data comparison and fusion, which can

then be used to develop a weapons solution to prosecute the

target. The most probable scenario is that a space-based

infrared sensor will be the first to detect a ballistic

missile launch and will dispatch a queuing message to other

sensors that are within the field of view of the missile.

As other sensors detect and track the ballistic missile

they will provide their parametric data on the contact to

develop a combined track through fusion and correlation.

3. Tracking

Once a missile has been detected, sensors must apply

discrimination processing to ensure that what is being

detected is a valid target and not an environmental

anomaly, decoy, or countermeasures being conducted against

the BMDS. Once the target survives this process, tracking

algorithms are applied over a series of valid detections to

develop a local system track where all of the target’s

pertinent information such as speed, altitude, range,

radial velocity, geodetic positioning data, and heading can

be derived utilizing information input from other systems.

This information must then be stored for its own use and

shared with all other units participating in the BMDS.

It is envisioned that the sensors will share the track

information to develop a composite track much the same way

CEC does in an effort to produce a comprehensive SIAP. By

fusing the track data into a composite picture the

continuity of the track is preserved, which also provides

24

the necessary parametric data to ensure that an intercept

can be conducted by the most capable weapons platform at

the earliest possible opportunity even when that weapons

system is outside the field of view of the missile. Thus

the sensors must develop and report tracks in an

asynchronous manner; this affects the correlation and

fusing of tracks. Track fusion and discrimination

algorithms are currently being developed as part of Project

Hercules, whose goal is to develop a composite picture and

target discrimination in a high countermeasure

environment.16

4. Identification

The issue of developing the capability of being able

to positively identify a ballistic missile based on its

performance and radar and IR signature has been on going

since the advent of the SDI in the 1980’s. As a process

within any BMDS, because a ballistic missile is by its

nature a passive object, it requires that enough

information be resident within a sensor detection signal,

that information can be readily extrapolated and exploited

in an effort to identify the object, and that multiple

sensor information can be correlated and fused to develop a

positive identification of the ballistic missile.

This information would then need to be compared to a

database of known missile characteristics in an effort to

positively identify the type of missile. Additionally,

this process would also need to incorporate the process of

discrimination between a reentry vehicle and any

countermeasures deployed to confuse the BMDS particularly

in the midcourse phase, which will be discussed later.

This process can be time consuming and computationally

16 MDA Exhibit R-2 RDT&E Budget Item Justification (PE 0603889C),
Feb. 2003.

25

intensive and may not yield a positive identification if

the signature was not extractable, the information was not

evaluated properly, or a target-signature match was not

possible due to inadequacies of the database.
5. Target/Engage

In order for the BMDS to be effective it must be able

to place a weapon on a target. The BMDS must assess what

weapons are available and are in an opportunistic position

to consummate an intercept and issue launch orders in a

timely enough fashion that the weapon has a possibility of

making the intercept before the ballistic missile exceeds

its capabilities. For instance, a SM-3 missile fired from

an AEGIS cruiser at a ballistic missile that is traveling

away from it must have the speed necessary to catch it

before it exceeds the SM-3’s maximum effective range;

otherwise, the SM-3 becomes merely a wasted asset.

The BMDS must also provide target tracking that is

accurate enough that a weapons system can determine its

probability of destruction, which in turn will be needed by

the BMDS to determine which weapons system to employ. The

BMDS must also provide predictive tracking data and the

lead necessary to place an interceptor kill vehicle at the

proper point in space to either hit the target for a

ballistic weapon or place an active homing hit-to-kill

(HTK) vehicle into a position where its own organic sensor

can take over and refine the intercept solution until

collision.

Critical to weapons conservation is that only one

interceptor should be assigned at any one time to a each

ballistic missile. The BMDS must assure that only one

weapon is assigned to engage a target, unless it is

determined that the assigned weapon cannot consummate the

26

intercept or if a weapons system through system failure is

operating autonomously.
6. Assess

The ability to assess the effectiveness of an

intercept conducted against a threat ballistic missile is

critical for conservation of limited weapons and will drive

the weapons employment doctrine. Ideally, you would want

to employ a “Shoot, Look, Shoot” doctrine in which an

interceptor is fired at the earliest opportunity, the hit

evaluated, and if unsuccessful another interceptor is

launched. If the timeline is compressed or an immediate

assessment cannot be made, a more liberal weapons

employment approach must be used, such as “shoot, shoot,

look” where multiple weapons are fired at a target until an

accurate assessment can be made. The latter approach has

the potential to expend many weapons early on, making it

difficult to defend against additional threat ballistic

missiles launched after the initial attack. However, this

may be necessary if the potential for use of WMD exist and

opportunities for intercept are limited. Throughout the

assessment process, all of the sensors must attempt to

track the target to provide feedback if the intercept was

successful or not and if unsuccessful to be well prepared

to continue prosecution of the threat.

27

Figure 2. An Integrated, Layered Defense Against

Missiles of All Ranges

C. PHASES OF FLIGHT

A ballistic missile has three distinct phase of

flight: the boost, midcourse and terminal phases (Figure

2). Each one of these phases has certain advantages for

conducting an intercept while the missile is in each

particular region and some significant disadvantages that

will need to be minimized if possible in order for the BMDS

to consummate an intercept. We will need to look at each

phase to determine what ramification each phase has on

timing considerations in developing a system-of-systems.
1. Boost Phase

This region of flight is the most desirable for

conducting an intercept of a threat ballistic missile. The

missile is traveling at its slowest rate of speed during

the boost phase, the large IR signature caused by the

28

launch plume is usually easier to detect provided that

there is no obscurant such as weather, and most

importantly, if a ballistic missile is intercepted and

destroyed in this phase, in all likelihood the warhead and

debris will fall well short of the intended target and

hopefully on the territory of the nation that launched the

missile.

However, this is also the most difficult phase in

which to intercept a ballistic missile and will require

perhaps the greatest level of automated decision making due

to the short duration of this phase. It is estimated that

the engagement time for a weapons system during the boost

phase varies from one minute for a short-range ballistic

missile up to four minutes for an ICBM, which is our

primary focus of concern in this thesis. While the missile

starts at zero speed and is most vulnerable due to lack of

speed for maneuverability, and is more easily detectable

due to the size of the entire missile and the heat

signature the booster produces, it is continuously

accelerating until booster burnout and detachment of the

reentry vehicle, making it harder to hit as time passes

(this phase is also referred to as the post-boost phase in

some literature)17. This also makes the kill chain timeline

short due to the need of detecting and identifying the

threat missile properly, therefore necessitating a

relatively high reliance on automation of battle

management. Adding into the equation natural phenomenon

such as weather and the ability to launch a weapon well

within one territorial boundary beyond the detection of

local active sensors and reach of weapons systems, the

17 BMDO, Harnessing the Power of Technology, The Road to Ballistic

Missile Defense From 1987-2007, Sep. 2000, p 6.

29

difficulty to conduct an intercept of a ballistic missile

in the boost phase of flight becomes even more difficult.
2. Midcourse

The midcourse phase of flight is defined as that

portion where the missile has departed endoatmospheric and

travels in the exoatmospheric region. It is during this

phase of the missile’s flight which provides the greatest

opportunity to engage with an interceptor based on the

length of time that the missile is in this phase, generally

an ICBM remains in this phase of flight up to twenty

minutes prior to entering the reentry or terminal phase.

In addition to the extended period of time to conduct an

intercept, the missile is also in a coast mode with no

additional source of power and maintains a relatively

predictable path. Therefore the ability to launch multiple

interceptors from geographically dispersed locations, and

the ability to assess the outcome of those launches is

increased. The increased time available also allows for

the utilization of the look, shoot, look doctrine enhancing

the probability of destruction in this phase.

The down side to this phase of flight is that the

incoming missile can deploy countermeasures that the BMDS

must be able to discriminate against to avoid track

saturation and detect the actual reentry warhead. This has

been identified by MDA as perhaps the most difficult

challenge to overcome in developing and implementing an

effective BMDS.
3. Terminal

The terminal phase begins at the point at which the

reentry vehicle enters the endoatmospheric region. This

phase is short: approximately thirty seconds, due to the

velocity of the reentry vehicle and the effects of gravity.

The advantages of this phase are that the reentry vehicle

30

is still on a predictable path and discrimination between

countermeasures and actual warhead is much more feasible

than in the other phases of flight. This is due to the

fact that if any countermeasures were deployed, they would

more than likely weigh less than the warhead and would slow

down or possibly burn up on reentry, thus unmasking the

actual warhead increasing the probability of destruction of

the actual target.

The major disadvantages of trying to engage during the

terminal phase are that the time line is short: reaction

time is limited as is the number of interceptors that can

be deployed against the reentry vehicle. Add into this

equation the closure speed of any interceptor and the

velocity of the missile, the decision of when to launch is

relatively more time critical than the other phases. This

time line can be even shorter if the missile is of the

short or medium range variety that does not enter the

exoatmospheric regime. Also, as happened in Desert Storm,

even if a ballistic missile is intercepted, the debris will

likely fall on friendly territory.

D. BMDS COMPONENTS

A major defensive system can be broken down in three

primary elements that perform the functions of the kill

chain throughout all the phases of the ballistic missile’s

flight; these are the sensors, weapons, and C2. Each of

the components within the BMDS has unique requirements both

in the way it conducts systems operation and processing of

data, the frequency of the communication mode and data

throughput, the overhead of encryption and decryption, and

the distance that it must transmit and receive the data.

31

1. Sensors

The BMDS will need to consist of air-, space-, ground-

, and sea-based sensors to provide as complete a level of

coverage as possible to detect, track, and report ballistic

missiles through all phases of flight (Figure 3). These

will consist of passive optical, infrared, and ultraviolet

sensors, primarily in space, LADAR (laser detection and

ranging) on aircraft, and active radars on board aircraft,

ships, and ground-based locations.18 These sensors will be

able to operate autonomously or as envisioned as a system-

of-systems layered and networked providing the most current

and accurate track data available to all participating

units within the BMDS architecture.

Figure 3. BMDS Sensor Diagram.19

Currently, the primary space-based passive IR BMDS

sensors are the older DSP satellites; they will start to be

replaced by the Space Based Infrared System-High (SBIRS-

High). SBIRS-High will consist of six satellites, four in

18 Ibid. p 8.
19 Ibid. p 8.

32

geosynchronous orbit (GEO) and two in highly elliptical

orbits (HEO), also known as Molniya orbit, and their

sensors will cover short-wave infrared, expanded mid-wave

infrared and see-to-the-ground bands, allowing it to

perform a broader set of missions as compared to DSP.

SBIRS-Low, which is the critical component of SBIRS,

will consist of twenty-four Low Earth Orbit (LEO)

satellites providing a unique precision boost, midcourse,

and reentry tracking capability, and providing decoy

discrimination data that is critical for effective BMD.

The Low satellite’s sensors will operate across long and

short wave infrared, as well as the visible light spectrum.

The long wave infrared (LWIR) spectrum is unique to the Low

system in that it will allow cold-body tracking of a

missile in the mid-course phase of flight.20

The SBIRS concept provides a synergistic approach to

the detection of ballistic missiles by distributing sensor

tasking which will prevent overloading by a single

satellite and allow multiple satellites to track targets

improving target data and providing continuous tracking of

a BM from launch through reentry. Both the SBIRS-High and

SBIRS-Low will have the ability to detect launches and will

be able to handoff a target to another satellite as the

threat missile leaves its field of view and can cue ground-

based radars while the threat missile is still below the

radars’ horizon.

In considering timing issues with space-based IR

sensors, the detection is passive and in one direction,

that is energy is transmitted by the missile and detected

by the IR sensor. Therefore, the time it is merely a

function of the range of the ballistic missile from the

satellite. This is summated with the total processing time

20 http://www.fas.org/spp/starwars/program/dote99/99sbirs.htm.

33

and the time to transmit the track to other sensors within

the network.

As previously mentioned, the active detection systems

within the sensor category will consist of ground-, air-,

and sea-based radars. Active sensors will generally

require more time overall to develop a track due to the

need for transmitting a signal out and receiving a reply,

that is, the range of the sensor to the target squared, in

addition to the processing and transmitting of a track.

However, this time is shortened when the target is in close

proximity to the sensor. In order to conduct surveillance

and target tracking of ballistic missiles, radar sensors

require large amounts of power; that is why space-based

radar sensors are not currently envisioned for use.

However, for the purposes of simulating a system-of-

systems, inclusion of such capability needs to occur to

validate the concept of this approach.

The current plan for sea-based radar systems is to

provide upgrades to the AEGIS systems on board ships to

bring them up to BMDS SPY-1D capabilities. In conjunction

with the SM-3 missiles, AEGIS systems will be able to

provide midcourse phase surveillance, tracking, and

intercept capabilities as part of the BMDS. However, the

sea-based BMDS, by its very nature, provides additional

time considerations that must be addressed. This is due to

the fact that for midcourse interception to occur,

particularly for all but possibly short-range ballistic

missiles, the AEGIS system will more than likely be out of

a direct line-of-sight communications path with other BMDS

participating units. This implies that any AEGIS ship must

transmit and receive via RF satellite communications, in

effect doubling the communications distance, in addition to

34

the time required for active detection and track

processing.

Ground-based radar (GBR) systems will consist of older

but Upgraded Early Warning Radars (UEWR) and new X-band

Radar (XBR) systems both of which will track and provide

initial planning for an intercept primarily in the

midcourse and terminal phases of flight. The UEWR are

currently in operation and will be used primarily for

surveillance, detection and tracking of ballistic missiles.

The XBR systems, in addition to conduct standard

active radar functions, will also possess the capability to

provide primary fire-control information for ground-based

interceptors (GBI), provide discrimination among warheads

and countermeasures or decoys, providing this information

to the GBI, and kill assessment of the targeted threat

ballistic missile. Plans currently call for an XBR to be

outfitted on board a sea-based platform, similar in

appearance to a floating oil rig, to be stationed in Adak,

Alaska with follow on systems to be field at other

locations.

The GBR systems currently in use and future systems

will need to be place in remote locations such as Alaska,

coastal areas, and in the northern Midwest in order to

detect the shortest and most likely avenue of approach of

ballistic missiles targeted against the U.S. These systems

will have considerably longer radar detection ranges at

maximum distance. The communications path, however, while

not shorter in distance for transmission, will have high

bandwidth data-transmission capability.

There currently are no air-based radar, infrared, or

LADAR capabilities that can track a ballistic missile

consistently throughout all phases of flight, and with

limited capability in the exoatmospheric regime. There are

35

developmental systems, such as radar upgrades for both

AWACS and E-2C aircraft, and IR and LADAR packages for

surveillance aircraft as well as unmanned aerial vehicles

(UAV) that provide promise for detection and tracking

capabilities in the boost and terminal phases of flight.
2. Weapons

The key to any successful defensive system is the

ability to negate the threat either through deception or

destruction. BMDS is no exception and there are numerous

weapons programs currently under development with each

being designed to intercept a ballistic missile in one or

more phases of flight from geographically disparate

locations (Figure 4).

Figure 4. BMDS Interceptor Diagram.21

Critical to the effectiveness of each of these weapons

systems is that they must be in a position to consummate an

intercept and deliver enough energy to destroy the threat.

The more accurate the weapons are the less energy that will

be required to destroy it. The types of weapons that are

currently being pursued are HTK interceptor vehicles. With

21 BMDO, Harnessing the Power of Technology, The Road to Ballistic
Missile Defense From 1987-2007, Sep. 2000, p 9.

36

technological advances allowing size and weight reductions

and removing the explosive warhead (either conventional or

nuclear) of the interceptors has been translated into a

higher degree of accuracy, greater thrust, agility, and

lower cost.22

There are existing weapons systems that are currently

being modified to support the BMDS concept. As mentioned

earlier, the AEGIS system with the SM-3 HTK missile

possessing a LWIR seeker head will provide sea-based

midcourse-interception capability, which can also be

utilized in the boost and terminal phase if the ship is so

positioned. The Patriot Advanced Capability–3 (PAC-3)

system will support greater terminal-phase interception

capability providing a layered defense in conjunction with

the Theater High Altitude Area Defense (THAAD) System,

which in turn will address the short- and medium-range

threat at high altitudes.

Under development is the Ground-Based Interceptor

(GBI), which is a HTK vehicle designed to conduct

intercepts of ballistic missiles from mid-course to

terminal phases. Once the missile is launched, it receives

guidance from the BMC3 until it can actively acquire the

threat missile with its own sensor. Once the GBI starts

active tracking of the threat, it will prosecute the target

on its own with the ability to conduct discrimination of

countermeasures and decoys.

In an effort to conduct intercepts in the boost phase

the Airborne Laser (ABL) is being developed. A chemical

laser placed on board a 747, its mission is to conduct

boost-phase intercepts by directing a high-energy laser

onto a vulnerable portion of a ballistic missile causing

22 Ibid, p 9.

37

intense heat and explosion. Because the ABL is designed to

destroy ballistic missiles in the boost phase, the aircraft

must be close enough to the launcher to employ the laser

within its effective range and must have the most up-to-

date and accurate information available in order to target

the laser beam on to a specific portion of the missile

where the damage will be the greatest. This same concept

is also being pursued for a similar space-based system,

although current technology has not advanced to the point

that can make this project realizable in the near future.
3. Command, Control, Battle Management, and

Communications (C2BMC)

Integral for any of the aforementioned weapons systems

to be effective is the ability to accurately predict a

ballistic missile’s path based on historical track data and

quickly determine the most capable and opportunistic weapon

to employ. The C2BMC must be able to perform these

functions quickly, as well as integrate and coordinate with

other C2BMC nodes within the BMDS and provide direction,

orders, and controls to subordinate sensors and weapons,

regardless of the number of units under the C2BMC control.

As a threat ballistic missile transits from one sensors

field of view to another, the C2BMC must ensure a timely

and positive handover and cue other local, bordering C2BMC

nodes and higher command elements of the presence of threat

ballistic missiles. In essence the C2BMC must be the

arbitrator and resources manager for its designated area of

responsibility (AOR), performing the following tasks:

creating a defensive plan, optimizing overall defense,

utilizing all resources, controlling systems according to

unified concepts, improving overall defense structure

efficiency, and minimizing overkill phenomenon.23

23 Haim Baruch, Battle Management, AIAA, 2000, p 207.

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

IV. BMDS REQUIREMENTS SPECIFICATION

A. INTRODUCTION

Figure 5. Process of BMDS development24

From the onset, we envision that the BMDS, as a

system-of-systems, will be designed with high cohesion with

low coupling because of both its requirements for

distributed and real time prosecution of ballistic

missiles.25 Additionally, as previously mentioned in

Chapter II, the Presidents vision is to implement systems

24 Dean Leffingwell, Don Widrig, Managing Software Requirements,

Addison-Wesley, 2000, p 263.
25 Caffall, D. S. and Michael, J. B. “A new paradigm for requirements

specification and analysis of system-of-systems”. Wirsing, M., Balsamo,
S., and Knapp, A., eds., Lecture Notes in Computer Science: Proc
Monterey Workshop 2002: Radical Innovations of Software and Systems
Engineering in the Future, Berlin: Springer-Verlag, 2003.

40

as they are developed over time which necessitates this

methodology to prevent the pitfalls of stove piping.

We have approached the problem of developing the

requirements of such a system-of-systems by utilizing

standardized software engineering processes, as depicted in

Figure 5, in an effort to determine both the high level

requirements of the BMDS and to flush out the potential

timing constraints on the system.

B. VISION AND SOFTWARE REQUIREMENT SPECIFICATION (SRS)

DOCUMENTS

The first stage in the continuing development of the

requirements specification for the notional BMDS was to

create a vision document (Appendix B) based on the previous

work completed.26 The purpose of this document is to

establish a starting point for the project that capture the

needs of the user, in this case MDA, the initial features

and high-level capabilities of the system, some of the

high-level requirements, and definition of the problem and

solution at a high-level of abstraction. Utilizing a

vision document template we were able to use the kill chain

process to determine foundation for the use case diagrams

and the high-level functionality of the BMDS that needed to

be realized. The vision document will need to be modified

as time passes to reflect a more refined vision of what the

system should be and continuously referred to throughout

the process of system development. This will ensure that

the requirements of the system that have been identified in

the use cases can be traced back to the vision document,

providing an indication that the necessary features of the

system are being addressed.

26 Dale Scott Caffall, “Conceptual Framework Approach for System-of-
Systems Software Developments” (M.S. Thesis, Naval Postgraduate School,
Mar. 2003).

41

As the requirements of the BMDS are identified and

documented, they will be refined into the Software

Requirements Specification (SRS) package (Appendix C). The

fundamental differences between the SRS and the vision

document is that the vision document is a broad-based

description of the users’ needs, goals, objectives, and

system features, whereas the SRS describes how these

features are to be implemented and the external behaviors

of the system in order to develop a solution to the

software development problem. The primary purpose of the

SRS is to serve as a reference standard for the development

team encompassing the functional and nonfunctional

requirements and design constraints of the system

controlling the project evolution through the input of the

design, implementation, and testing groups. As the vision

document evolves, the SRS must reflect those changes and

serve as a traceability reference point for verification

and validation testing to ensure that the developed system

is meeting the established requirements.

42

C. DESCRIPTION OF BMDS ARCHITECTURE27

Figure 6. Distributed C2BMC Architecture.

A distributed system is defined as:

…one in which hardware or software
components located at networked computers
communicate and coordinate their actions only by
passing messages…Computers that are connected by
a network may be spatially separated by any
distance. They may be on separate continents, in
the same building or in the same room…distributed

27 James Bret Michael, Phillip Pace, Man-Tak Shing, Murali Tummala

and others, eds., Test and Evaluation of the Ballistic Missile Defense
System FY 03 Progress Report, Naval Postgraduate School, Sept. 2003.

43

systems has the following significant
consequences: concurrency; no global clock;
independent failures. The motivation for
constructing and using distributed systems stems
from a desire to share resources.28

The complexity, size, and the need for concurrency of

a global BMDS necessitates that it be developed as a

distributed system. In order to achieve the end goal of

developing a distributed system-of-systems we envision the

BMDS as depicted in the high-level distributed architecture

as shown in Figure 6.

The overarching BMDS will consist of a loosely coupled

set of regional C2BMC systems; geographically separated

networks interconnected much like the Internet. The intent

is to allow all participants to pull the information from

specific areas of responsibility (AOR) as desired, but also

to ensure that time-critical information can be pushed to

those geographically collocated units that need it to

effect destruction of a threat ballistic missile or to

hand-off the information to non-geographically collocated

units as a missile transits from one region to another.

Note that the various sensors and weapons may be connected

to more than one regional C2BMC system via proxy. The

advantage is that geographic location is a “don’t care” in

that context.

The real-time nature of the battle requires that all

sensor information be local to fight the battle. As the

missile continues in its flight, the real-time battle

management, together with some of the sensors and weapons,

will handover to another regional C2BMC system. The use of

28 George Coulouris, Jean Dollimore, and Tim Kindberg, Distributed

Systems Concepts and Designs, Addison-Wesley, New York, 2001, p 2.

44

the Broker pattern will ease the handover of the assets

from one region to another.29

By distributing the C2BMC in this manner, information

regarding any ballistic missile threat is available and

accessible to all participants as desired, but will not

overburden the network by having all the information

presented to all units all the time; this will provide

increased availability of data; more localized control, and

improved response times of the units to counter the threat.

Thus, units subscribe to the network with their addresses

being available in routing tables with knowledge of the

geographic location of the unit so that only data and

information relevant to a particular unit (or region) is

forwarded to that unit (or region). For example, fire-

control data from another theater or region may not be

useful and hence will stay local, while threat information

from other theaters or regions may provide valuable

situational awareness and therefore it can be made

available to other regions. Each regional BMC2 system

consists of three major sub-systems: a Sensor Net, a

Weapons Net and a BMC2.

Sensor Net refers to a distributed system that

provides the sharing of track data among Sensor Fusion

Processors, Weapons Net, Weapon Platforms and the BMC2. It

supports a distributed track data-bidding process through

which the Sensor Fusion Processors collaboratively perform

track correlation along with fusion to improve the quality

of the integrated air picture. It also allows the

broadcasting of cueing messages among Competent Authorities

and the Sensor Controlling Authority.

29 F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns. Wiley &
Sons, New York, 1996.

45

Weapons Net refers to a distributed system for target

bidding. It manages a list of targets waiting to be

engaged by the Ballistic Missile Defense System, and

coordinates cooperative weapons assignments (i.e., the

pairing of appropriate weapons with targets) based on the

bids (i.e., figure of merits that are based on many factors

such as the defended area, predicted impact point, threat

type, health and status of weapons, current engagements)

submitted by individual weapons platforms, and policies,

rules of engagement and manual overrides from the battle

manager.

BMC2 refers to the automation for supporting the BMC2

functions. It provides the interface for battle managers

to create, modify, or delete the prioritized target list,

set the initial weapons authorizations and other rules of

engagement, and to monitor the engagement to its conclusion

given that it may have to reassign the track to another

weapon.

The regional BMC2 will be supported by three

integrated sub-networks: a Sensor Net, a Weapons Net, and a

Command and Control (C2) Net emulating a geographical

intranet. The primary justification for the division along

functional lines is that the data, in its entirety, flowing

across each network may not be relevant to the others. For

instance, the specific radar parametric data derived from

the Sensors is critical for use in the Weapons Net but is

not necessary for C2; only the particular missile-track

information (e.g., a Link-16 track) is pertinent.

Conversely, intelligence information, such as electronic

intelligence (ELINT) or human intelligence (HUMINT)

regarding the possible numbers, location or movement of

missiles that is critical for C2 planning is generally not

46

critical for the actual employment of a weapon system or to

conduct sensor tracking. Therefore, the data that is

critical for each network will be determined and made

available, but information that is not critical for the

functional area will not be provided, thus preventing

excessive overload on that particular network that doesn’t

require the data.

At the Sensor and Weapons Net, the message format will

need to be binary and in a standardized format to reduce

overhead and time latency, and ensure time-critical data is

made available to the participating units that need it.

The C2 network, by necessity, will consist of more than

just track data to include, United States Message Text

Format (USMTF) messages, intelligence data, etc. Current

C2 systems incorporate middleware such as XML or CORBA in

order to integrate legacy sensor and weapons systems to

keep the implementation independent of the platform. It is

our desire to move away from this scheme.

The BMC2 System will need to consist of various

communication mediums in order to connect the various

participants operating with heterogeneous communications

suites. Currently, MDA is considering fiber-optic cable

for the terrestrial elements of the network and will allow

large throughput of data. However for the air-, sea-, and

space-based elements the only possible means for data

transmission is by RF energy. For space-based systems,

UHF, EHF, or SHF can be utilized and the obvious choice

would be the higher frequencies for greater data

throughput. Ground-, and sea-based units can also utilize

these frequency ranges. However, due to the higher

frequencies requiring large antenna sizes, only the larger

combatants ships will be able to participate at the EHF/SHF

47

level. For air-based units, the only viable choice

currently for data transmission is in the UHF frequency

band. This is driven by the need for smaller antenna sizes

and only UHF has a high enough data throughput to be

effective. The bottom line is whatever platform the

servers reside on, they will need to be capable of

transmitting and receiving data from all sources.

As mentioned previously, each of the nets are divided

along functional lines and will consist of the data

necessary to conduct their primary mission. The C2 Net

will be interfaced with the Sensor and Weapons Net to

provide C2 functionality for the direction and employment

of each of these systems. The sensors will be cued by

command inputs from the Sensor Net via the C2 Net and track

data will be received for distribution to higher and

adjacent command elements interfaced within the C2 Net and

BMC2 system. Weapons systems assignment shall be directed

for employment based on the tracking-data inputs from the

Sensor Net, weapons availability from the Weapons Net, and

the previously mentioned aspects of the weapons tasking

logic. The C2 Net will be interfaced with higher and

adjacent commands in the BMC2 system for coordination and

information exchange, such as the hand-off of tracks.

The Weapons Net will encompass all participating

weapons systems. A bidding process shall occur for the

employment of weapons on specifically designated targets

provided by the Sensor Net. The weapons bidding process

will be the basis of weapons assignment, thus precluding

expending multiple weapons from different weapons platforms

on one target. As envisioned, each weapons system will

evaluate the tracks provided by the Sensor Net, determine a

numerical value based on the trajectory of the missile and

48

its evaluation of the probability of kill, and then place a

bid. After a predefined amount of time, the bidding will

be locked and a weapons assignment (i.e., the pairing of

weapons and targets) will be made using a three-phase

commit protocol that is able to tolerate both site and

communications failure, while minimizing the frequency of

blocking below that of two-phase commit.30 Each weapon

system will continue to evaluate the target in the

eventuality that the weapon misses or does not completely

destroy the target. If the target is destroyed the process

is complete, else the bidding process starts anew. The

battle manager continuously oversees the whole process,

following each track through the entire engagement process.

The Sensor Net consists of netting all of the

available sensors for the detection of a ballistic missile

in a regional BMC2 system. Each sensor, as it develops a

track on a ballistic missile, will transmit the track to a

Sensor Fusion Processor. The tracks that are developed and

transmitted by the sensors will carry a timestamp along

with the target’s parametric data so that the Sensor Fusion

Processor will able to utilize the most current information

with which to update the track. At the Sensor Fusion

Processor, the data from its local sensor sources will go

through an initial discrimination scheme. A track table

will need to be maintained on each contact. As each track

report arrives, it will need to be correlated based both on

an evaluation of the contact current positional status in

relation to tracks from other sensors, and a comparison of

its current position in relation to a calculated predictive

parametric behavior. This will ensure that the contact is

30 Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman,

Concurrency Control and Recovery in Database Systems, Addison-Wesley,
1987, p 240.

49

valid and can be updated by the most current source, and

validate that it is the actual missile and not a decoy,

debris, or perhaps another missile in close proximity.

Once the missile contact is validated, the Sensor Fusion

Processor will develop a single track containing the

pertinent target data and a unique identifier. The fused

track will be pushed onto the Sensor Net for utilization by

all participating units. The pertinent parametric data will

also be pushed to the Weapons Net for weapons system

utilization and weapons bidding. The track data will be

also pushed to the C2 Net for situational awareness and

command and control decision-making.

D. USE CASES

A use case is defined as:

A description of a set of sequences of actions,
including variants that a system performs that
yields an observable result of value to an actor…
when used in the context of system development
the Use Cases establish the desired behavior of
the system for verifying and validating the
system architecture. 31

The use cases, in other words, identify who, what and

how of system behavior through the interactions between a

user and that system.32 Five use cases for the BMDS, each

corresponding to a different phase of the kill chain, have

been proposed.33 In our thesis, we refine those use cases

to identify system requirements, behaviors, and timing

31 Grady Booch, Jim Rumbaugh, Ivar Jacobson, The UML Reference

Manual, Addison Wesley 1999, p 488.
32 Dean Leffingwell, Don Widrig, Managing Software Requirements,

Addison-Wesley, 2000, p 235.
33 Dale Scott Caffall, “Conceptual Framework Approach for System-of-

Systems Software Developments” (M.S. Thesis, Naval Postgraduate School,
Mar. 2003).

50

constraints (Figure 7). These use cases will become part

of the SRS, and will need to be periodically refined. This

process will be complete when there are sufficient enough

use cases that can describe all possible ways in which the

system can function. When this is achieved these Use Cases

will then serve as the foundation for further design,

implementation, and testing of the system.

Figure 7. High-Level BMDS Use Case

51

1. Use Case 1: Detect Potential Threat Ballistic

Missile.
Context Diagram:

Figure 8. Use Case 1 Diagram

Context of Use: The goal of this use case is to

detect possible threat ballistic missile and push the track

data onto the Sensor Net.

Level: User goal.

Primary Actors: Threat ballistic missile, Sensor Net,

Sensor Fusion Processor, Sensors, Sensor Controlling

Authority, Competent Authority.

Stakeholders and Interests: Regional Commanders,

Higher Commanders.34

34 Higher Commanders is defined as all those commanders senior to and
in the direct chain of command of the regional commander.

52

Preconditions: Sensor is in search mode.

Success Guarantee: Sensor Fusion Processor develops a

single-track file for the potential threat ballistic

missile.

Trigger: Adversary launches threat ballistic missile.

Main Success Scenario:

Competent authority determines that a potential

ballistic missile threat exists in a predetermined

geographic region, and issues cueing command message to

Sensor Controlling Authority via the Sensor Net to position

sensors in such a way that will allow a potential threat

ballistic missile event to be detected within the field of

view of the sensors.

Sensor Controlling Authority receives cue from Sensor

Net and directs sensors towards potential threat.

Individual sensor initiates Use Case 1.1 to develop a

local track for the potential threat ballistic missile and

transmit track files to the Sensor Fusion Processor.

Sensor Fusion Processor receives one or more tracks

and filters data from its associated sensors, and develops

single-track file for the potential threat.

Extensions:

1a: If potential threat ballistic missile is not

determined to exist in the area of interest then no cueing

message will be issued.

2a: If Sensor Controlling Authority receives no cue,

the sensor will continue to conduct surveillance in its

current region.

53

2b: If Sensor Controlling Authority receives cueing

message but is unable to comply with the cueing message

from the Competent Authority, a Non-Compliance Message

shall be forwarded to the Competent Authority and the

sensor will continue to conduct surveillance in its current

region.

3a: If none of the sensors generates a track file for

the potential threat ballistic missile, then the process of

detecting a threat ballistic missile fails.

4a: If the sensor fusion processor received no track

file from sensors, then the process of detecting a threat

ballistic missile fails.

Technical and Data Variations List: None

54

2. Use Case 1.1: Generate and Transmit a Local

Track
Context of Use: The goal of this use case is to have

a sensor generate a local track based on valid detection

parameters of the sensor.

Level: Sub-use-case of Use Case 1.

Primary Actors: Threat ballistic missile, Sensors,

Sensor Net, Sensor Fusion Processor

Stakeholders and Interests: Regional Commanders,

Higher Commanders

Preconditions: A potential threat ballistic missile

event to be detected within the field of view of the

sensor.

Success Guaranteed: Sensor develops and transmits an

active potential threat ballistic missile track to Sensor

Fusion Processor

Trigger: A potential threat ballistic missile event

has occurred within the field of view of the sensor.

Main Success Scenario:

Sensor observes a potential threat ballistic missile

event that meets or exceeds the sensor’s detection

threshold within its field of view and develops a hit.35

Sensor generates cueing message, providing precise

location as to where the event is taking place and

transmits it to Sensor Net.

35 “Develop a hit” is defined as a sensor signal that survives the

sensors environmental and false detection processing.

55

Sensor starts tracking to develop and refine the hits

into a singular, coherent track when the number of hits

exceeds the track threshold.

Sensor transmits the track data to the appropriate

Sensor Fusion Processor.

Extensions:

1a: If data is not sufficient to pass screening, then

the detection process fails. Neither track nor cueing

message are generated. The sensor will continue to monitor

the environment.

2a: If precise location is not attainable, the sensor

will provide sufficient data to cue remote sensors to a

general locale for surveillance.

3a: If the sensor has detected an event but the number

of detections does not exceed the track threshold, the

process fails. No track will be generated. The sensor will

continue to monitor the environment.

Technical and Data Variation List:

Track information shall include track-identification

value, time stamp, track quality, geo-reference, missile

identification, bearing, altitude, direction of travel,

speed, and parametric sensor-data information.

56

3. Use Case 2: Cooperatively Track and Classify

Threat Ballistic Missiles
Context Diagram:

Figure 9. Use Case 2 Diagram

Context of Use: The goal of this use case is to

identify and type-classify the threat ballistic missile,

develop fire-quality tracks for engagement solutions, and

forward target-track list to Weapons Net.

Primary Actors: Sensor Net, Sensor Fusion Processors,

Weapons Net, BMC2

Stakeholders and Interests: Regional Commanders,

Higher Commanders

Preconditions: Sensor Fusion Processors, Sensor Net,

and Weapons Net are all operational.

57

Success Guarantee: BMC2 forwards target track list to

the Weapons Net.

Trigger: Sensor Fusion Processors are tracking

potential threat ballistic missile(s).

Main Success Scenario:

Individual Sensor Fusion Processor uses intelligence

profiles of threat ballistic missile(s) to type-classify

tracks.

Individual Sensor Fusion Processor provides type-

classified track data to Sensor Net.

Individual Sensor Fusion Processor compares the track

data in the Sensor Net against its own developed and

improved track data by fusing data obtained from other

Sensor Fusion Processors with its own and adding cross-

references to those tracks in the Sensor Net. The Sensor

Fusion Processor then forwards the improved track data to

the Sensor Net.

Situation Awareness Filters within the BMC2 monitor

tracks in Sensor Net, and develop and forward cueing

messages to neighboring Sensor Nets.

The Target List Coordinator within the BMC2 develops

one master target list and forwards it to Weapons Net.

Extensions:

1a: If all Sensor Fusion Processors determine that

the track is not a threat, the process fails.

1b: If a Sensor Fusion Processor fails to type-

classify a track, it will label it as “unknown.” The BMC2,

which monitors those tracks resident in Sensor Net, will

attempt to re-classify the “unknown” track as “hostile,”

58

“friendly,” “neutral,” “assumed friend,” or “assumed

hostile.”

3a: If a Sensor Fusion Processor fails to produce

improved track data then that data which is obtained from

other Sensor Fusion Processors, it will stop sending its

own track data (which will not result in better quality

tracks) to the Sensor Net until such a time that it can

produce better quality tracks than what exists on Sensor

Net.

3b: If the Sensor Fusion Processors fail to merge

tracks, then multiple tracks for the same target will

appear in the Sensor Net.

4a: If Situation Awareness Filters fail to forward

cueing messages to neighboring Sensor Nets, sensors in

neighboring regions will continue to conduct surveillance

in their current regions.

5a: If the BMC2 fails to develop a target list and

forward information to Weapons Net, process fails.

Technical and Data Variations List:

Sensor Fusion Processors and BMC2s will have

electronic access to intelligence profiles of threat

ballistic missile.

Fire-quality track information shall include position,

velocity, covariance, sigma, missile type, impact point

prediction (IPP), launch point estimate (LPE), and re-entry

vehicle (RV) type.

59

4. Use Case 3: Cooperative Weapons Assignment
Context Diagram:

Figure 10. Use Case 3 Diagram

Context of Use: The goal of this use case is to

assign targets to weapons via cooperative target bidding.

Primary Actors: Sensor Net, Weapons Net, Weapons

Platform, BMC2

Stakeholders and Interests: Regional Commanders,

Higher Commanders

Preconditions: Weapons Net is functional.

Success Guarantee: Weapon assignments are made.

Trigger: Weapons Net received a target list from the

BMC2.

60

Main Success Scenario:

Weapons Net creates “target bidding request” for each

target on the target list and broadcasts the information to

all Weapons Platforms in the region.

Individual Weapons Platform examines the “target

bidding request” data and the attached track data, matches

its capabilities against the targets, formulates target

bids and forwards them to the Weapons Net.

Weapons Net closes the bidding process for each target

when each target’s bidding time expires. Throughout the

process this data is forwarded to the BMC2, which uses a

target-bidding algorithm to create a weapons assignment.

The BMC2 creates a weapon assignment message and replies to

the Weapons Net.

The Weapons Net broadcasts the weapons assignment to

all Weapons Platforms in the region.

Extensions:

1a: If Weapons Net fails to create target-bidding-

request information, then the process fails.

3a: If a target does not receive a winning-weapon

bid, Weapons Net will notify BMC2.

4a: If Weapons Net does not receive any

acknowledgment (positive or negative) from the BMC2 after a

predefined approval-time window, the Weapons Net will

assume that the weapon assignment is approved by default.

Technical and Data Variations List:

Target-bidding-request information will include the

target-track identification, extrapolated track

information, time window for bidding, and any restrictions

on the type of weapons used against the target.

61

A target bid will include the weapon identification,

the intended target-track identification, proposed time to

commence engagement, estimated time to intercept the

target, and probability of kill success.

Weapons assignment information will include weapon and

intended target identifications, estimated probability of

kill, and earliest and latest time to time to commence

engagement.

62

5. Use Case 4: Engage Targets
Context Diagram:

Figure 11. Use Case 4 Diagram

Context of Use: The goal of this use case is to

engage threat ballistic missile.

Primary Actors: Sensor Net, Weapon Platform, Weapons,

Interceptors

Stakeholders and Interests: Regional Commanders,

Higher Commanders

Preconditions: Weapon Platforms and Weapons are

functional.

Success Guarantee: Weapon successfully intercepts

target.

63

Trigger: Weapon is assigned to engage a target.

Main Success Scenario:

Weapon Platform contacts Sensor Net and receives track

information to develop a firing solution for its weapon.

Weapon Platform continues to update its firing

solution using the track information from Sensor Net.

Weapon activates its interceptor within the interval

defined by the earliest and the latest time to commence

engagement.

Interceptor engages threat ballistic missile.

Extensions:

1a: If the assigned Weapon Platform fails to generate

a firing solution, the Weapon Platform notifies Weapons Net

and the target is re-bid.

3a: If the Weapon Platform receives an order from the

BMC2 to cancel the weapon engagement before the weapon

activates its interceptor, it will stand down the weapon

and send a compliance acknowledgment to the BMC2. The BMC2

advises Weapons Net of the change of mission.

3b: If the Weapon Platform receives an order from the

BMC2 to cancel the weapon engagement after the weapon is

outside of the control of the Weapon Platform, it will send

negative acknowledgment to the BMC2.

4a: If the interceptors fail to engage the threat

ballistic missile, the process fails.

Technical and Data Variations List: none

64

6. Use Case 5: Assess Kill
Context Diagram:

Figure 12. Use Case 5 Diagram

Context of Use: The goal of this use case is to

determine the kill status of the threat ballistic missile.

Primary Actors: Sensor Net, Sensor Fusion Processors,

Sensors, BMC2, threat ballistic missile

Stakeholders and Interests: Regional Commanders,

Higher Commanders

Preconditions: Sensors, Sensor Fusion Processor and

Sensor Net are all functional.

Success Guarantee: BMC2 determines that threat

ballistic missile is destroyed and reports kill.

65

Trigger: Weapon engaged target.

Main Success Scenario:

Sensor Fusion Processors continue to identify and

type-classify the threat ballistic missile events as shown

in use case no. 2. It applies feature recognition

processes, discriminates objects in debris clouds, and

compares tracked objects to intelligence profiles.

BMC2’s Kill Assessment Unit monitors and compares

tracking data from Sensor Net for evidence of destroyed

targets, and issues immediate probability of kill.

BMC2 determines that threat ballistic missile is

negated and issues kill-assessment report.

Extensions:

1a: No Sensor Fusion Processor can discriminate

objects. Organic weapon sensor searches debris cloud and

discriminates objects and updates Sensor Net. If organic

weapon sensors are unable to provide an update, the process

fails.

2a: BMC2, based on data supplied by the Sensor Net,

cannot determine with high enough probability that threat

ballistic missile is negated. Sensor Net continues to carry

track as active threat.

Technical and Data Variations List: none

66

E. CLASS DIAGRAM

Now we turn to refining the use cases into high-level

abstract Class Diagram (Figure 13). The new classes Sensor

Fusion Processor, Sensor Net, and Weapons Net are realized

and the necessary messages and data are identified and

included. The basic class framework and data-only

interface strategy is retained to reduce coupling between

components and realize the properties as defined in

previous work.36

F. SYSTEM SEQUENCE DIAGRAMS (SSD)

In order to further identify and refine the

requirements, behavior, and timing constraints of the

system based on the developed use cases and BMDS

architecture we will utilize System Sequence Diagrams

(SSD). The purpose of a SSD is to show the dynamic

interaction of objects within a system by graphically

depicting the time ordering of message passing among the

objects. For each of the use cases described earlier, an

equivalent SSD is given and are described in detail in

Appendix D.

36 Dale Scott Caffall, “Conceptual Framework Approach for System-of-

Systems Software Developments” (M.S. Thesis, Naval Postgraduate School,
March 2003), p 37.

67

Figure 13. BMDS Class Diagram (After Ref. Conceptual

Framework Approach for Systems-of-Systems Software
Development)

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

V. BMDS MODEL

A. INTRODUCTION

Figure 14. The Miracle

In deciding how to best transform from the abstract

requirements to the concrete specification, we evaluated

several technologies. The Unified Modeling Language (UML),

while providing an adequate platform for this subject, was

found to be inadequate for complex systems with real-time

constraints. The Prototype System Description Language

(PSDL), while a strong candidate for its ability to handle

the real-time aspect of the project, we found to be not

suitable for this particular task, as it is too fine

grained and is only capable of modeling static systems (our

models have dynamic modules). Therefore, in our search for

a rough-order modeling language, we selected UML-RT, the

70

real-time extension for UML as specified in Selic and

Rumbaugh “Using UML for Modeling Complex Real Time

Systems.”37

In using UML-RT to model the specifics of the system,

we followed a hierarchy plus input output process (HIPO)38

approach. We modeled all nine major components from the

use cases (Sensor, Sensor Controlling Authority, Competent

Authority, Sensor Fusion Processor, Sensor Net, Weapon

Platform, BMC2, Weapon, and Weapon Net). As our thesis

focuses on the sensor portion of the Sensor-to-Shooter

equation, only the Sensor Fusion Processor and Sensor Net

are decomposed down to two levels of detail. Their models

include Interface Capsules on the first level of

decomposition, which shows the point at which they

interface with peer assemblages. The second level of

decomposition for these two components has Communications

Capsules for communicating between capsules as opposed to

components. This helps further decompose the complexity of

each component. As the sensor portion of the use cases was

our focus, the other six assemblages are not decomposed

further and have implicit Interface Capsules, which are not

explicitly shown on their first level of decomposition.

All of these models are included in this thesis in

Appendix E. Please refer to Appendix E for a complete

treatment of each model.

UML-RT is hierarchical and, as such, is excellent for

decomposing complex systems into less complex pieces. If

one examines Figure 6, an entity called SFP (Sensor Fusion

Processor) can be found.

37 Bran Selic and Jim Rumbaugh, Using UML for Modeling Complex Real
Time Systems, Apr. 1998.

38 IBM Corporation, HIPO: A design Aid and Documentation Technique,
1974.

71

Figure 6.

Through use case analysis, we determine this entity to

be necessary, and we determine which functions it should

execute. The model can then be broken down into

subcapsules, five of them in this case. Each of these

subcapsules then is responsible for a piece of that

functionality. As one decomposes, each subcapsule is

treated as a black box, with input and output. Once each

subcapsule is decomposed, however, the opaque blackbox

becomes a transparent whitebox, where the processes are

either described by state machines or subcapsules that can

be further decomposed.

72

Figure 26

Each of those five sub-capsules is then further

decomposed into multiple sub-capsules in the following five

figures.

Figures 27 through 31.

Each sub-capsule also contains sub-capsules, which can

be further decomposed if desired eventually down to a state

73

machine. This is the process we used to decompose a highly

complex system into a moderately complex system, and which

could be used to decompose it further into a simpler

system.

One more point on vocabulary; the sensor portion of

the entire Sensor-to-Shooter equation is strictly concerned

with tracks. Anything which the sensors are tracking is a

track. The Sensor Net maintains a master track list for

all affiliated Sensor Fusion Processors, Weapon Platforms,

and the BMC2 to reference. Tracks only become targets once

the BMC2 designates them as targets by putting them on the

master target list.

This HIPO decomposition has proven to be very useful

in determining where the major functions should be, as well

as for describing the highest-level algorithms (or

processes) of the system. By breaking the system into

capsules (smaller, less complex units) and sub capsules,

with a few state machines, one begins to see where the most

time-critical pieces of the system are and how they can be

accommodated. Finally, by following this process, one

begins to see how an inherently complex system can be

broken down into more understandable pieces.

B. CONTEXT

The context of the UML-RT model is based directly on

the BMDS architecture (Figure 6) and is annotated as a sub-

graphic on each functional depiction shown with the dotted

line on a box. As decomposition occurs the graphics will

display the higher level that invokes it.

74

C. ASSESSMENT

We learned several things about the system by doing

this decomposition.

•Passing firing solution quality data to a weapon

platform that has won a target bid is the highest priority

task. Therefore, it has been streamlined to ensure the

fastest, best response possible.

•We realize that it would be difficult for us to put

real-time requirements on every aspect of the system. As

such, we modeled the passing of firing-solution-quality

data to a weapon platform in a small number of capsules to

help lower the complexity and, therefore, increase the

capability of the system to be specified using hard-time

requirements.

•Cueing for potential targets is the second highest

priority task. Therefore it is also streamlined.

•In deciding how to handle cues, it became obvious

that, since potentially tens of platforms could be

simultaneously sending cueing messages, all of them

directly to the Sensor Net, we had to add into the model a

simple XOR-style correlation capability.

•It was our opinion that the master track list

maintained by the Sensor Net should be the source to

develop the ‘common operating picture’ used by all Sensor

Fusion Processors. Therefore, we modeled it as being

pushed out to all SFPs, with each SFP maintaining a

materialized view (i.e., maintaining a local copy and

temporarily maintaining local differences from the master

track list). These local changes start out as pending

updates submitted to the Sensor Net for incorporation, or

75

if rejected, then they become local data. One example of

local data is, if the SFP has a lesser quality track than

that which is already on the master track list, it would

hold its track until it beat the one listed on the master

target list or until the track either disappeared or was

determined to be a different track from any listed on the

master track list.

•At the time of completion of this thesis, there is

still quite a debate out there on what constitutes ‘sensor

fusion’. Therefore, for the sake of consistency in this

chapter and Appendix E, we provide the following

definitions:

•Track Correlation: Comparing two tracks to determine

if they are the same actual object or two different

objects, resulting in one track being forwarded and the

other being dropped.

•Track Discrimination: Filtering out objects that are

not relevant (debris, chaff, decoys) in order to reduce the

load on the system/network.

•Track Fusing: The act of taking a track and filling

in any gaps in coverage by using a different track taken

from a different sensor/perspective, or of taking a track

taken from a different type of sensor and using it to

enhance the base track, making the ellipse of certainty

(the area where we think the missile is) smaller and more

precise.

•Track Abstraction: The act of sampling a real-time

track, making it less accurate but lighter in data load and

therefore easier to pass, to give larger granularity

situational awareness to peer Sensor Nets. This is useful

between Sensor Nets to broaden situational awareness beyond

76

one’s own local area. It is also the method used to pass

cues to Sensor Controlling Authorities.

77

VI. BMDS OMNET ++ SENSOR FUSION PROCESSOR (SFP)
SIMULATION

Figure 15. OMNet++ BMDS SFP Simulation.

In deciding on a simulation tool for modeling the

Sensor Fusion Processor, we evaluated two well-known

general-purpose simulation systems; MATLAB and OMNeT++. We

found that MATLAB is too fine grained of a simulator than

is needed at this stage of development, and that OMNeT++

better fits our requirements for a coarse-grain level of

modeling fidelity. We developed a simulation based on the

device which is least understood in the entire system --

the Sensor Fusion Processor (Figure 15) -- in order to

further our understanding of how it would function within

the context of the Ballistic Missile Defense System.

The design for the simulation flowed naturally from

the UML-RT model, which is included in the appendices of

this thesis. We found a one-to-one correspondence between

our model and the OMNeT++ sub-modules, gates, and

parameters.

78

The following are significant assumptions that we made

while developing our simulation models of the BMDS:

• Modules within the SFP are collocated (included

parameter is Gig-E transmission speed between

modules).

• Message sizes are based on estimates of what data

would be required from each device.

• There are many proposed algorithms proposed for

sensor fusion. The inputs, outputs, and time

delays represented in our simulation are

representative of those algorithms. These

parameters can also be easily replaced with more

specific parameters as needed.

• Discrimination occurs at the individual sensor

and is not explicitely part of the simulation, as

the SFP is not designed to screen out debris,

decoys, etc.

Our input parameter values are derived from the

following:

• Number of Ground-Based Radar Sensors: Typical of

a standard theater defense.

• Number of Satellite-Based IR Sensors: Typical of

the number of satellites involved in a standard

theater defense.

• Number of actual objects being tracked:

Arbitrary, but based on typical world scenarios.

79

• Data Rate (bps) between SFP and Sensor Net:

Default rate is based on CPT Joel Babbitt’s 3.5

years of strategic communications experience.

• Data Rate (bps) between Capsules: Based on

Gigabit Ethernet.

• Size (bits) of Fused Track: We based it on one of

two assumptions, being that fusion only replaces

pieces of a track rather than adding to it, or

that a track increases in size when fused.

• Data Rate (bps) between Radar Sensor and the SFP:

Based on current telecommunications standards.

• Size (bits) of an Unfused Radar Track: Based on

existing military systems.

• Delay (sec) between Radar Tracks sent to the SFP:

Based on existing systems.

• Data Rate (bps) between IR Sensor and the SFP:

Based on distance from the earth, downlink

frequency, and speed of light.

• Delay (sec) between IR tracks being sent to the

SFP: Based on rough order parameters of current

systems.

• Size (bits) of an unfused IR track: Based on

existing systems.

• Delay (sec) between Master Track List broadcasts:

Based on how often it would have to be done in

order to ensure target accuracy and aid

collaborative fusion.

• Number of collaborative fusion requests from CFC:

Arbitrary, but must be equal to or less than the

80

number of actual objects being tracked, as you

cannot fuse more tracks than you actually have.

• Time (sec) each Module takes to handle a track:

Based on an estimate from a Professor Wen Su

assuming level 3 Internet Protocol routing for

each discreet message in the simulation and top

of the line 2003 hardware and routing software.

• Time (sec) to check a track against the List:

Based on an estimate from Professor Wen Su

assuming associative memory, data stores (as

opposed to data bases), and the top of the line

2003 hardware and memory management software.

• Time (sec) required to perform a Fusing Action:

Arbitrarily set, as this function is still not

well defined by MDA.

The parameters all have ranges and interdependencies

discussed in the analysis of the results of the simulation

done in Chapter VII of this thesis and more fully analyzed

in Appendix G. The data types for each parameter were set

in the body of the simulation code. All parameters, which

take seconds, are doubles (thereby allowing milliseconds,

microseconds, etc.). All parameters, which take bits or

bits per second, are integers (as there is no such thing as

a ‘partial’ bit).

As a caveat, we have not fully validated this model

over the entire range of possible realistic values. The

user should establish the validity of the outputs generated

by exercising the model over the range of values of

interest.

Knowing that there are many who may come after us, we

designed this simulation to be extensible. Parameters,

81

processes and algorithms are commented and explained in the

body of the code (See Appendix F).

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

VII. DISCUSION OF RESULTS

The most significant timing constraint placed on the

BMDS is the need to destroy a threat ballistic missile

before it exceeds the weapons-system capabilities for a

successful intercept. This assessment must be applied

through each phase of flight of the threat ballistic

missile for each type of weapon that it has the potential

to engage. For instance, the duration of the boost phase

is between one to four minutes depending on the type of

missile. In this case, we say that the threat missile is

an ICBM that will accelerate to Mach 9 (though not until

exoatmospheric) and will be in the boost phase for the

entire four minutes and that the interceptor, which will

accelerate to Mach 4 (at a much faster rate then the ICBM)

can conduct the intercept within this phase but not beyond

into the exoatmospheric region. This means that the entire

kill chain of events leading to destruction, and the

messaging between the BMDS objects as depicted in the SSD,

must occur within this timeframe or else the intercept will

not be physically realizable.

Working the problem from the projected point and time

of expected intercept, the HTK missile must be “off the

rail” with a sufficient amount of time to track and hit the

target. Therefore, the time of flight necessary for the

interceptor must be subtracted from the total time

available. If the interceptor requires (at maximum range)

one minute to intercept the ICBM, then the latest possible

time that the interceptor can be launched is at three

minutes from the time of the ICBM launch. If there is

weather precluding observation by space-based IR sensors or

physical obstructions to GBR’s such as mountainous terrain,

84

the time for initial detection is increased and overall

reaction time is decreased. In the case of weather

obscuration, detection could be delayed for up to one

minute until the threat missile penetrates and is above the

cloud layer for IR sensor detection; this would require the

BMDS to conduct all of the required tasks within two rather

than three minutes. Therefore, the BMDS must be able to

detect, track, assign, and engage the ICBM, and perform all

the necessary communications within that same timeframe.

Looking at the kill chain from initial detection, the

time it takes a sensor to receive enough hits to develop a

track and forward that track out to a SFP will vary based

on the distance of the target from the sensor, the update

rate and number of hits required to develop a track for

each specific sensor. The time necessary to transmit a

signal and receive a contact hit from a target is twice the

distance divided by the speed of light. The general

function for developing a solid track is based on applying

a fast Fourier transform (FFT) algorithm, the calculations

of which are on the order of n log n, where n is the number

of sampled values in a particular range bin.39

Once a track is developed it must be compared against

a database of tracks local to the sensor to either update

an existing track or develop a new track. Tracking the

target and applying gates have a time complexity on the

order of nm log nm, where n is the number of established

trajectories and m is the number of measured values of

targets that n can be mapped to.40 All of the calculations

can be conducted in a timely manner and are within the

39 Jane Liu, Real Time Systems, Prentice Hall, Upper Saddle River,

N.J., 2000, p. 16.
40 Ibid, p. 19.

85

realm of high-speed processors and are further enhanced by

electronically steered phased-array radars.

Once the track has been modified it must then be

transmitted to a SFP for further processing. Our

simulation model incorporates an update rate of 0.5 seconds

for an active sensor. This number was selected based on

the fact that we have abstracted out the specific type of

sensor. Passive sensors are typically updated at a lower

rate based on the need to observe the target longer,

requiring more hits to develop a track as opposed to active

sensors. This is the case with space-based IR satellites,

because both the detection distances are greater and there

is a requirement to sample more hits in order to refine a

passive track; our simulation model uses a delay of two

seconds to model the initial track development and

transmission.

Distance, with regards to communication, will also

come into play as a significant factor affecting timing.

Satellites in geosynchronous orbit require a minimum of one

thirteenth of a second for a transmitted signal to travel

between the satellite and the earth receiving station; this

is just a rough estimate based on the distance divided by

the speed of light and does not take into consideration the

duration of the transmission nor the amount of information

to be carried on the frequency. Terrestrial units, while

having greater bandwidth, must also traverse long

distances, in some cases up to half the circumference of

the Earth. Sea-based units potentially will experience the

greatest time delay with communications. In contrast to

line-of-sight communications, Naval surface combatants rely

on satellite-based communication; such communication

requires multiple paths and transmissions to participate in

the BMDS.

86

After a track is developed locally, it is sent to a

SFP to be further processed by fusing multiple sensor

tracks into a single track for distribution to other units.

These tracks will be arriving at an asymmetric rate based

on the update and transmission of each of the different

sensors. Discrimination, filter, and fusing algorithms

processed by the SFP are applied to all received tracks.

The timing requirements imposed by these algorithms cannot

be assessed as the algorithms are to be developed.

The summation of all the delays in transmitting and

receiving data must be incorporated within the simulation

to provide a realistic representation of timing within the

system.

When looking at the BMDS and the messaging that must

occur, as depicted in the SSD’s, there are multiple

instances where potential bottlenecks could occur.

The potential is first identified at the SFP with

numerous sensors providing track data at asymmetric rates.

The SFP must discriminate, filter, and fuse the current

track data into a single track and forward that track out

to the Sensor Net. The SFP must also compare that track

with a track database to determine if it is to be used to

update an existing track or develop a new track.

Additionally, developing a rough track classification

requires a table look up, data comparison, and association

based on known parametric data.

The Sensor Net, once it receives the tracks,

distributes them to participating BMC2 elements, which must

then evaluate and determine which tracks warrant

classification as threat ballistic missiles, developing a

master target list to prioritize those targets based on

Impact Predicted Points (IPP), priority defended areas,

Rules of Engagement (ROE), etc., and forwarding that list

87

to weapons-capable platforms to evaluate their capability

against the threat. This process consumes time that must

be accounted for within the total available time to conduct

a successful intercept.

A parametric (i.e., sensitivity) analysis involving

numerous simulation runs was conducted to determine what

were the most significant timing constraints on the system

and at what point they became critical, which are annotated

in Appendix G with both data tables and line graphs. A

methodical approach was utilized in the process of

obtaining data where one input value was varied and the

others remained constant to see how that one variable

impacted the system. For data input values, we utilized

commercial data-transmission rates and approximate system

clock-speed values for internal timing. In doing so we

abstracted the data points and precluded any implication of

existing or developmental systems, while still obtaining

valid research data.

The most significant timing issue that was obtained

through multiple iterations of the simulation was that as

the track load increased, whether it was from large numbers

of tracks being reported, moderate numbers of tracks being

reported by large numbers of sensors, or when the sensors

increased their update rates, the Track List Capsule would

become saturated, thus increasing the time to transmit

track data. This is evidenced by corresponding increases

of both the TLC percent utilization and average time to

broadcast tracks on the Sensor Net with an increase in the

number of tracks reported or sensors updating.

We observed that track message size and data

throughput rates had little impact on the time to transmit

track data. Additionally, as the number of track

collaboration requests increased, the number of normal

88

tracks dropped to zero and collaboratively fused tracks

increased, but there was no real impact to the overall

average track-process time. As to be expected, increases

in module-processing time, track-list-comparison times, and

track-fusion times all had corresponding increases to the

average track processing and throughput values.

Having now finished one full pass through the Use

Case-Model-Simulation cycle, we found that the Use Cases

feed directly into the UML-RT models, which in turn flow

directly into the OMNeT++ simulation. In addition, issues

that arise in building, running, and analyzing the

simulation and simulation outputs provide direct feedback

on the validity of the model, which in turn provides direct

feedback to the validity of the use cases themselves.

Following this feedback loop ourselves, we found it

necessary to redesign the SFP’s Track List Capsule in order

to handle heavier work loads, in this case more traffic, as

shown in Figure 16. Based on the results of the simulation

with the redesigned Track List Capsule included, we

conclude that the redesign is not sufficient, and that a

redesign of the SFP as a whole, which would probably place

a slave TLC off of the master TLC local to each of the

fusing capsules, would be required to reduce the load on

the Track List Capsule and prevent the system from

bottlenecking there.

89

Figure 16. SFP Track List Capsule Redesign

As a redefinition of this capsule’s sub-capsules, we

specified the changes listed below:

• Track Registry Capsules (A and B): Maintains the

SFP’s master list of all perceived valid tracks as

well as any additional tracks received from the Sensor

Net, including any commands added to received tracks

or commands pertaining to the locally maintained

tracks. Only Track Registry Capsule is active at a

time. The other is in a semi-active state, in which

it is receiving all updates from the Track Correlation

Capsule, but it is not being used by the Track

Correlation Capsule to serve TFC/CFC correlation

requests. However, when it receives a newer copy of

the master track list from the Track List Receiving

90

Capsule than that which is held by its active

counterpart, it goes active and directs the other

active capsule to go into semi-active mode.

• Track List Receiving Capsule: Receives the Track List

sent out periodically from the (higher level) Sensor

Net. It sends the Track List to the semi-active Track

Registry Capsule first, then, after the active becomes

semi-active, it forwards the list to the newly semi-

active capsule.

91

VIII. CONCLUSION

A. SUMMARY.

In a field of study that is not well defined such as

ballistic missile defense and which consists of systems of

systems, one must discover and develop methodologies for

refining requirements and ensuring a project’s purpose is

successfully accomplished. The Use Case-Model-Simulation

feedback cycle that we used is a systematic engineering

methodology for developing such highly complex systems of

systems.

Through the use of this methodology, we were able to

establish a feedback cycle. Using this cycle, we were able

to find weak points in the Sensor Fusion Processor, which

we then redesigned and validated through simulation. This

type of feedback or refinement loop is key to ensuring

success in distributed software development in a Software

Engineering Environment (SEE).
B. RECOMMENDATIONS.

There are several areas of future study, some of which

are listed here:

• Validation of the model, to include running test

cases for likely scenarios.

• Expanding or enlarging the model by representing

the rest of the Ballistic Missile Defense System.

• Inclusion of specific algorithms and

specification of interfaces for future inclusion

of algorithms.

• Integrating this methodology with a SEE tool such

as Rational UDX.

• Documenting requirements traceability and

analysis which follows the requirements from Use

92

Cases to the model and finally to the simulation

artifacts.

• Application and enhancement of MDA’s simulation

models which collectively form the BMDS Core

Model set, focusing primarily on the BMD System

Level M&S (Modeling and Simulation).41

41 Kevin J. Greaney, “Evolving A Simulation Model Product Line

Software Architecture From Heterogeneous Model Representations” (Ph.D.
dissertation, Naval Postgraduate School, Sept. 2003), p. 224.

93

APPENDIX A. GLOSSARY

ABL. 1. Airborne Laser. 2. Aircraft Based Laser.
ABM. Anti-Ballistic Missile.
ABM Treaty. Anti-Ballistic Missile Treaty of 1972, signed
and ratified by the (former) Soviet Union and the United
States, limiting deployment on each side to one site
comprising 100 interceptors, 100 launchers, and several
ground-based radars. The Treaty also regulates development
and testing. In December 2001, President George W. Bush
announced that the United States would withdraw from the
treaty, which the U.S. did in June 2002
Acquire. 1. When applied to acquisition radars, to detect
the presence and location of a target in sufficient detail
to permit identification. 2. When applied to tracking
radars, to position radar beam so that a target is in that
beam to permit the effective employment of weapons.
Acquisition (ACQ). (Sensor) The results of processing
sensor measurements to produce object reports of interest
to the system.
Active. In surveillance, an adjective applied to actions
or equipment, which emit energy capable of being detected,
e.g., radar is an active sensor.
Active Defense (TBMD). Active defense protects against
theater missiles by destroying them in flight. Engagement
capability is required throughout all phases of the
missile’s trajectory (boost, post-boost, mid-course, and
terminal) to prevent saturation of point defense, to negate
warhead effects, and to ensure minimal leakage in defending
critical assets. Therefore, active defenses must consist of
defense in depth to provide multiple engagement
opportunities with differing technologies, increasing the
probability of kill, and countering the enemy’s counter-
measure efforts. Active defenses could consist of space-,
air-, ground-, and sea-based systems. If a strategic
ballistic missile defense system is deployed, the active
TMD should be supported by, but not limited by, those
systems to increase the defense in the theater of
operations. Active defense is considered one of the four
pillars of TMD capability.
Active Homing Guidance. Guidance system in which both the
source for illuminating the target, and the receiver for
detecting the illuminating energy reflected from the target
is carried within the missile.

94

Active Sensor. One that illuminates a target, producing
return secondary radiation, which is then detected to track
and/or identify the target. An example is radar.
AEGIS. A totally integrated shipboard weapon system that
combines computers, radars, and missiles to provide a
defense umbrella for surface shipping. The system is
capable of automatically detecting, tracking, and
destroying air-borne, sea-borne, and land-launched weapons.
AEGIS BMD. Aegis Ballistic Missile Defense (Aegis BMD)
Project is an element of the Ballistic Missile Defense
System, and is being developed to provide a rapidly
deployable, highly mobile defensive system capability
against short-to-intermediate range ballistic missile
attacks on population centers, debarkation ports, coastal
airports, amphibious objective areas, expeditionary forces,
troops, friends, and allies. Forward positioning of the
ship makes possible a missile defense that will protect
vast areas, often-entire countries. The Aegis BMD element
of the BMDS builds on the proven Mark 7 Aegis Weapon System
including modifications to the Standard Missile, and the
Mark 41 Guided Missile Launch System.
AEW. Airborne Early Warning.
Ballistic Missile (BM). A rocket-propelled vehicle moving
under its own momentum and the force of gravity that does
not rely upon aerodynamic surfaces to produce lift and
consequently follows a ballistic trajectory when thrust is
terminated.
Ballistic Missile Defense (BMD). All active and passive
measures designed to detect, identify, track, and defeat
attacking ballistic missiles (and entities), in both
strategic and theater tactical roles, during any portion of
their flight trajectory (boost, post-boost, midcourse, or
terminal) or to nullify or reduce the effectiveness of such
an attack.
Ballistic Missile Defense System (BMDS). 1. An integrated
system of all BMD sensor and weapon systems. This system-
of-systems will provide greater capabilities to defend
against ballistic missile attacks. 2. The aggregate BMD
BMC3 and BMD forces that, in total, provide defense against
ballistic missile attacks to North America and other areas
of vital interest.
Battle Management. Battle management is composed of two
parts, namely, strategies and the actual collection of
tasks to be performed to successfully implement chosen
strategies. Examples of strategies are: area defense,
adaptive preferential defense, offense deployment, and

95

rules of engagement depending on the evolution of battle,
etc. Examples of tasks are, resource allocation, target
assignment, probability of kill calculations and kill
assessment, etc. Given a set of strategies, resources and
hostile asset deployment, battle management addresses the
problem of choosing a strategy or set of strategies and
performs the associated tasks that would result in the most
“desired” outcome.
Battle Management/Command and Control (BM/C2). The BM/C2
is the equipment, communications networks, and processes
which the warfighting Combatant Commanders will use to
monitor the theater ballistic missile fight and to direct
the activities of the various BMDS elements.
BMC2. A set of computer workstations with software and
communications gear providing full set of BMDS applications
at a command center.
BMDS Block. The Missile Defense Agency (MDA) intends to
field a set of software packages every two years. These
sets of software packages are called BMDS Blocks.
BMDS Elements. These are the systems that as a single
entity provide BMDS capability.
Boost Phase. The first phase of a ballistic missile
trajectory during which it is being powered by its engines.
During this phase, which usually lasts 3 to 5 minutes for
an ICBM, the missile reaches an altitude of about 200 km
whereupon powered flight ends and the missile begins to
dispense its reentry vehicles. The other phases of missile
flight, including midcourse and terminal, take up to the
remainder of an ICBM’s flight time of 25 to 30 minutes.
Boost Defense Segment (BDS). The portion of the BMDS that
defeats ballistic missiles in the period of flight prior to
the termination of powered flight.
Command. Authorization required to perform command
operations for command-oriented functions.
Command, Control, Battle Management, and Communications
(C2BMC). An independent command and control capability
from which ballistic missile defense operations can be
implemented. The C2BMC allows for full situational
awareness and devolution of command (if necessary). Each
C2BMC Node will have the capability of planning,
coordinating, directing, and controlling surveillance and
engagement operations.
Command, Control, Communications, Computers, and
Intelligence (C4I). Procedures and technologies supporting

96

command and control, communications, and intelligence
requirements.
Cooperative Engagement. Engagement of a target through
cooperative use of resources and/or data from more than
just one participating unit.
Cooperative Engagement Capability (CEC). The capability to
engage a target through cooperative use of resources and/or
data from more than one participating sensor. There are
several forms of cooperative engagement, including 1. use
of a composite track to launch a defensive weapon against a
target, 2. fire control guidance of an interceptor using a
composite track, and 3. near-real-time shift of interceptor
control from one firing unit to another to improve overall
defense system or architecture performance.
Correlation. The process of assigning or computing weights
to determine that two or more tracks, consisting of smooth
state estimates and representation of the uncertainty of
the estimates, are for the same object or that they are for
separate objects, or the result of that process.
Cued Operation. The directing of one sensor based upon the
data received from another sensor.
Cueing Command. The command within a tactic, which
specifies the sensor element’s coverage volume.
Cueing Data. Cueing data is a subset of object tracks
within a sensor element’s coverage volume.
Data Fusion. Multilevel, multifaceted process dealing with
automatic detection, association, correlation,
discrimination, situation awareness, and threat assessment
by combining data and information from single and multiple
sources.
Data Link. 1. Means of connecting one location to another
to transmit and receive data. 2. Particular path between
two nodes over which data are transmitted. It includes
transmission medium and digital-to-analog converters,
modems, transmission equipment, antennas, etc., associated
with this path.
Defended Asset List (DAL). A ranked listing of facilities,
forces, and national political items that require
protection from attack or hostile surveillance. The list
is compiled from Federal departments and agencies, Unified
and Specified Commands, and the Armed Services to ensure
National Security Emergency Preparedness functions.
Defense Support Program (DSP). System of satellites in
geo-stationary orbits, fixed and mobile ground processing

97

stations, one multi-purpose facility, and a ground
communications network. Primary mission is to provide
tactical warning and limited attack assessment of a
ballistic missile attack.
Detection. Discrimination of an object from its background
and its assignment to the class of potentially interesting
objects.
Distributed Bidding. A distributed and automated process
that (1) implements rule sets to assign and communicate
among participants the weights or scores (i.e., the bid) of
a system/platform’s ability to conduct an engagement or
perform some discrete sensor support activity and (2)
recommends the weapon system(s) or sensor(s) to execute the
engagement or perform the discrete sensor support activity
based on the distributed bids.
Early Warning. (1) Early detection of an enemy ballistic
missile launch, usually by means of surveillance satellites
and long range radar. (2) Early notification of the launch
or approach of unknown weapons or weapon carriers.
Endo-atmospheric. Within the earth’s atmosphere. The
altitude commonly used to separate the endo- and exo-
atmospheric regimes varies from 100 km to 120 km.
Engage. In air or missile defense, a fire control order
used to direct or authorize units and/or weapon systems to
fire on a designated target
Engage On Remote (EOR). An advanced engagement operation
where track data from external sensor(s), in the absence of
local sensor data, are passed to the fire control component
of a weapon system which uses these data to calculate
launch parameters, fire the interceptor, and provide in-
flight target updates to the interceptor. The local weapon
command center retains control and responsibility for the
engagement.
Exo-atmospheric. Above the atmosphere where the drag is
negligible. The altitude commonly used to separate the
endo- and exo-atmospheric regimes varies from 100 km to 120
km.
External Sensor. Sensor program external to Missile
Defense Agency, e.g., national assets and service sensors.
Family-Of-Systems. A set or arrangement of independent
systems that can be arranged or interconnected in various
ways to provide different capabilities. The mix of systems
can be tailored to provide desired capabilities dependent
on the situation

98

Field of View (FOV). The angular measure of the volume of
space within which the system can respond to the presence
of a target.
Fire-Control Quality Data. The system-specific data
required for a weapon system to compute a fire-control
solution and conduct an engagement.
Forward-Based Sensor. Sensor deployed close to target
launch point.
Forward Pass. The act of passing control and
responsibility of an interceptor missile in flight from the
launching command post to another command post. Sensor
and/or guidance information may be generated by the
launcher or may originate elsewhere. Interceptor tracking
and in flight updates may continue to be performed by the
launching unit, or from another guidance and control
element, or a combination of the two.
Fusion. 1. The combining of automatically correlated
information with data that refines the information or
presents it in an intuitive format. Fused data in many
cases will arrive later than real or near-real-time data.
2. Once associated or correlated, the process of combining
all sources of information to improve the quality of the
knowledge of the object. (e.g. a radar, an ECM intercept
receiver, and a spotter all report on an object at location
“X.” In creating the track file on that object, all
information is used to either improve the accuracy of
location, or amplify on the nature of the object.
Gateway. 1. A gateway in a communications network is a
network node equipped for interfacing with another network
that uses different protocols. A gateway may contain
devices such as protocol translators, impedance matching
devices, rate converters, fault isolators, or signal
translators as necessary to provide system
interoperability. It also requires that mutually
acceptable administrative procedures be established between
the two networks. A protocol translation/mapping gateway
interconnects networks with different network protocol
technologies by performing the required protocol
conversions. 2. A generic term for a C4I network node
designed to provide interoperability by interfacing between
two (or more) systems or networks that use different
protocols. There are two types of gateways: (a) data
forwarders between two or more tactical data links (TDLs),
or between a TDL and a non-TDL system, and (b) routers and
retransmitters (previously referred to as “cross-banding”).
All gateways require the establishment of mutually

99

acceptable procedures for interfacing between the connected
systems or networks.
Geo-stationary Orbit (GSO). An orbit 35,784 km above the
equator. A satellite placed in such an orbit revolves
around the earth once per day, maintaining the same
position relative to the surface of the earth. It appears
to be stationary, and is useful as a communications relay
or as a surveillance post.
Global Positioning System (GPS). The Navstar Global
Positioning System is a space-based radio navigation
network providing precise positioning needs of all military
Services. When fully operational, 18 satellites are in 6
orbital planes with an orbit period of 12 hours at 10,900
nautical miles altitude. Each satellite transmits three L-
band pseudorandom noise-coded signals, one S-band, and one
ultra high frequency for spacecraft-to-spacecraft data
relay.
Gridlock. 1. The process of removing navigational and
radar biases by calibrating to a common force reference
point. This is accomplished by all units of the force
simultaneously recording the position of a commonly held
target that has a specified relative position from the
force center (or other reference point) at the same
instant. 2. The computer process used to compare an
individual ship's track data with remotely originated track
data, and to determine the correction necessary to bring
the tracks into alignment.
Ground-Based Interceptor (GBI). A kinetic energy
exoatmospheric interceptor with long flyout range to
provide, where possible, a multiple engagement capability
for defense of the U.S. with a relatively small number of
missile launch locations. It is designed to engage post-
boost vehicles and/or RVs in the midcourse phase of flight.
Ground-Based Radar (GBR). A task-able, modular, multi-
function, phased-array radar that provides surveillance,
tracking and engagement planning data in post-boost,
midcourse, and terminal flight phases within its
capabilities. It also provides target discrimination, in-
flight target updates (IFTUs), and target object maps
(TOMs) to interceptor vehicles.
Hand-Off. The transfer of a track file from one sensor or
system to another system in which the first does not
continue to track.
Handover. 1. The transfer of a track file from one sensor
or system to another system in which the first sensor or

100

system continues to track the objects. 2. The successful
acquisition of a target using data from the cue.
High Earth Orbit (HEO). An orbit about the earth at an
altitude greater than 3,000 nautical miles (about 5,600
kilometers).
Hit. Measurement from a passive sensor or return from an
active sensor judged to be from an object, e.g.,
observation, contact report, return, signal detection, and
threshold exceedance.
Hit Assessment. A process that examines the results of an
engagement and determines if the target of interest was
physically hit. This term has specific meaning for “hit-
to-kill” types of engagements where there is no proximity
effect and an impact is necessary to damage or destroy the
target. A “hit” is not a kill, but is a prerequisite for a
kill with hit-to-kill intercepts.
Hit To Kill (HTK). See Kinetic Kill Vehicle
Hostile Track. The classification assigned to a track
that, based upon established criteria, is determined to be
an enemy threat.
Identification (ID). The process of determining that a
tracked object is a friendly, neutral, hostile, or unknown
object, or the result of that process.
Impact Point Prediction (IPP). Predicted point of impact
on the earth’s surface of a reentry vehicle, usually
specified in terms of circular error probable. Estimate
includes perturbing effects of atmosphere and resultant
uncertainties.
Information Pull. Transfer of information product(s) to
information user(s) in response to a request by and in a
time frame defined by the user or their applications.
Information Push. 1. Transfer of information product(s) to
information user(s) in response to profile(s) submitted
(typically by the commander’s staff) in anticipation of a
group of information needs. 2. The process of creating a
user profile of information requirements for continuous
broadcast to an operating unit or supporting entity.
Infrared (IR). Electromagnetic radiations of wavelength
between longest visible red (7,000 Angstroms or 7 × 10E-4
millimeter) and about 1 millimeter.
Initial Track. The first track formed for an apparent
target.

101

Intercontinental Ballistic Missile (ICBM). A ballistic
missile with a range capability from about 3,000 to 8,000
nautical miles. The term is used only for land-based
systems to differentiate them from submarine launched
ballistic missiles.
Interoperability. Ability of systems, units, or forces to
provide services to or accept services from other systems,
units, or forces and to use the services so exchanged to
operate effectively together. (2) Conditions achieved
among communications-electronics systems or communications-
electronics equipment when information or services can be
exchanged directly and satisfactorily between them and/or
their users.
Intermediate Range Ballistic Missile (IRBM). A ballistic
missile having a range capability of 1,500 to 3,000
nautical miles.
Joint Tactical Information Distribution System (JTIDS).
Joint Service radio system that provides reliable, secure,
jam-resistant, high-capacity integrated communications,
navigation, and identification capability through the use
of direct-sequence spread-spectrum, frequency-hopping, and
error detection and correction techniques. One of two
transmission devices currently approved to use Link-16
message standards.
J-Series Family of Tactical Data Links. The family of data
links based on common data elements, consisting primarily
of the J-series messages and the communications protocols
and hardware for Link 16 (TADIL J), Link 22, and VMF, as
well as point-to-point, multi-point, and radios/satellite
broadcast J-series data link capabilities developed in the
future.
Kill Assessment. A process that, based on sensor data,
examines in real time the results of an engagement and
determines whether the warhead was broken open or not.
Based on the outcome the battle manager would decide to or
not to fire again at that target. Kill assessment is
different than lethality assessment or mission kill.
Lethality assessment is a delayed response that may take
many minutes or an hour or a day to discern from ground-
effects detectors and perhaps on-site visits to the missile
wreckage. If the missile or warhead is knocked off course
so that it won’t land in the defended area the engagement
is called a “mission kill”. The warhead might not be
broken open in a mission kill.

102

Kinetic Energy Weapon (KEW). Uses kinetic or motion energy
to kill an object, e.g., rock, bullet, nonexplosively armed
rocket, electromagnetic rail gun.
Kinetic Kill Vehicle (KKV). A weapon using a non-explosive
projectile moving at very high speed to destroy a target on
impact. The projectile may include homing sensors and on-
board rockets to improve its accuracy, or it may follow a
preset trajectory (as with a shell launched from a gun).
Laser. An active electron device that converts input power
into a very narrow, intense beam of coherent visible or
infrared light; the input power excites the atoms of an
optical resonator to a higher energy level, and the
resonator forces the excited atoms to radiate in phase.
Derived from Light Amplification by Stimulated Emission of
Radiation and classified from Class I - Class IV according
to its potential for causing damage to the eye.
Laser Detection And Ranging (LADAR). Technique analogous
to radar that uses laser light rather than radio or
microwaves. Light is bounced off target and then detected;
return beam provides information on target distance and
velocity.
Launch Detection. Initial indication by any one of a
variety of sensors that a booster has been launched from
some point on the surface of the earth, with initial
characterization of the booster type.
Launch On Remote. Interceptor launch approach in which
fire control data (measurements or state vectors and error
covariance) of sufficient quality are provided by an
external system and used by local fire control system to
calculate fire control solution and launch interceptor
before data can be provided by local sensor. Once launched,
this concept assumes local sensor will take over from
external sensor, and any in-flight updates to interceptor
will be computed based on local sensor information.
Launch Point Determination. With computer methods, uses
missile track observation to estimate point on earth’s
surface from which missile was launched, expressed in terms
of circular error probable.
Layered Defense. Sets of weapons that operate at different
phases in ballistic missile trajectory; first layer of
defense (i.e., boost phase) could pass remaining targets on
to succeeding layers
Link. Transmission medium that can be wire, coaxial cable,
optical fiber, or free space, as in radio systems. Allows
any two subscribers in a network to exchange information

103

generated by one terminal device and received by another.
Uplink and downlink refer to free space transmission from
an earth station to a communications satellite and back
Satellite-to-satellite relay is referred to as “crosslink.”
LINK-11. See TADIL A
LINK-16 (formerly TADIL-J). NATO designation for the US
MIL-STD 6016, Tactical Digital Information Link (TADIL) J
message standard and defined in STANAGs 5516 and 5616. U.S.
Navy uses NATO designation; its use among all U.S. Joint
Services when referring to TADIL J has become more common
and recently became policy by JS/J-6 direction. MIL-STD-
6016 states that TADIL J and Link-16 are equivalent terms
when applied to U.S. systems and platforms’ however, Link-
16 is preferred. It is a secure, high capacity, jam-
resistant, node-less data link that uses the Joint Tactical
Information Distribution System (JTIDS) transmission
characteristics and the protocols, conventions, and fixed-
length message formats defined by the JTIDS Technical
Interface Design Plan (TIDP).
Local Track. A track that is initiated and updated by a
network participating sensor based on observations of the
tracked object(s) by its local sensor(s) only.
Long-Wavelength Infrared (LWIR). Thermal radiation emitted
by source in electromagnetic spectrum encompassing infrared
wavelengths of 6 to 30 microns.
Low Earth Orbit (LEO). Satellites that are at altitudes
between 100 and 400 nautical miles. They have short
duration revolutions (about 90 minutes), short visibility
envelopes (2.5 to 10 minutes over a tracking station),
short life spans, and are most subject to orbital
perturbations due to atmospheric drag and earth
gravitational anomalies.
LPP. Launch Point Prediction
Medium Wavelength Infrared (MWIR). Thermal radiation
emitted by a source in the electromagnetic spectrum
encompassing infrared wavelengths of 3 to 6 microns.
Message. A message is information sent and received
between an origin and a destination. It has a specified
number of bits possibly grouped into words, a definite
beginning and a definite end, and obeys certain protocols
or rules for the sender and receiver to establish channels
and agree on various parameters for unambiguous
communication. Messages may be encoded, encrypted, and
corresponding decoded and decrypted.

104

Mid-Course Defense Segment (MDS). The portion of the BMDS
that defeats ballistic missiles during the period of flight
between boost and atmospheric reentry.
Midcourse Guidance. The guidance applied to a missile
between termination of the boost phase and the start of the
terminal phase of flight.
Midcourse (MC) Phase. That portion of a ballistic
missile's trajectory between the boost phase and the
reentry phase when reentry vehicles and penaids travel at
ballistic trajectories above the atmosphere. During this
phase, a missile releases its warheads and decoys and is no
longer a single object, but rather a swarm of RVs and
penaids falling freely along present trajectories in space.
Missile Defense Agency (MDA). This agency is tasked by the
Secretary of Defense to develop and field the BMDS. The
Secretary of Defense directed that the change in names from
the Ballistic Missile Defense Organization (BMDO) to MDA in
a memorandum dated 02JAN02.
Molniya Orbit. This is a highly eccentric orbit with high
apogee (.71 to .74) in the northern hemisphere and low
perigee in the southern hemisphere. For a specific set of
orbital parameters, this orbit has a changing velocity and
altitude, which, when combined with the earth’s rotation,
keeps the orbiting satellite within view for very long
periods (96 percent) above a designated point on earth.
Network. An interlinked web of switching and transmission
systems connected to subscriber communications terminals.
A network includes all the hardware and software components
residing in switching and transmission systems, as well as
the communications-related hardware and software and
components residing in hosts (e.g., communications
protocols).
Network Centric. A term used to describe the widespread
sharing of situation information without knowing in advance
what value may be derived when that information is
available for operational decisions. Information may be
shared by a combination of “push” (publish) and “pull”
(subscribe) techniques. The shared information is viewed
as having no owner, but rather available to all with a
need. This sharing allows all war fighters to have the
same understanding of the situation and view of the battle
space, and facilitates Network Centric Warfare --
integrated operations and synchronization of actions. In
Network Centric Warfare the information to be shared is
distinguished from command authority authorizing use of the
information for combat operations (command and control).

105

The information shared, together with TTP, the command
hierarchy, and commanders’ orders provide for Network
Centric Operations.
Network Centric Warfare (NCW). An information superiority-
enabled concept of operations that generates increased
combat power by networking sensors, decision makers, and
shooters to achieve shared awareness, increased speed of
command, higher tempo of operations, greater lethality,
increased survivability, and a degree of self-
synchronization. In essence, NCW translates information
superiority into combat power by effectively linking
knowledgeable entities in the battle space.
Node. A set of equipment and processes, which performs the
communications functions at the end of the data links which
interconnect those elements, which are resident on the
network.
Object. A distinct entity with a definite spatial extent
and whose different parts maintain their relative distances
constant over a period of observation
Observation Interval. The time that elapses between
successive observations of an object by one or more
sensors.
PAC-3. PATRIOT Advanced Capability-3
PADIL. Patriot Data & Information Link.
Passive. In surveillance, an adjective applied to actions
or equipment, which emit no energy capable of being
detected.
Passive Sensor. Detects naturally occurring emissions from
target for tracking and/or identification.
Phased-Array Tracking Radar Intercept On Target (PATRIOT).
Point or limited area defense system originally built to
intercept aircraft. PAC-3 improvements, which will give it
greater capability against theater ballistic missiles,
include radar upgrades and selection of an improved
missile, either PATRIOT multimode or ERINT.
Post-Boost Phase (PBP). That portion of the trajectory of
a ballistic missile between the end of powered flight and
release of the last RV. Applies only to multiple-warhead
ballistic missiles.
Post-Boost Vehicle (PBV). The portion of a rocket payload
that carries multiple warheads and which has the
maneuvering capability to independently target each warhead
on a final trajectory toward a target. Also referred to as
a "bus."

106

Precision Decoys. Decoys that precisely match RV
characteristics either exo-atmospherically or endo-
atmospherically, or both, and seek to deceive the defense
into intercepting them.
Predicted Intercept Point (PIP). The calculated position
in space where the target and interceptor coincide.
Probability of Detection (Pd). The probability that an
observation is generated from a frame of sensor data for an
object that is within the field of view.
Probability of Kill (Pk). Describes the lethality of a
weapon system. Generally refers to armaments (i.e.
missiles, ordnance, etc.) Usually the statistical
probabilities that the weapon will detonate close enough to
the target with enough power to disable the target
Protocol. Rules, such as open systems interconnection,
that enable error-free computer connection and
communication at a given layer or segment of a network
architecture. Typically established by industry or
international organizations such as the Institute of
Electrical and Electronic Engineers (IEEE) or American
National Standards Institute (ANSI).
Radar. (Formerly an acronym for Radio Detection and
Ranging.) A technique for detecting targets in the
atmosphere or in space by transmitting radio waves (e.g.,
microwaves) and sensing the waves reflected by objects. The
reflected waves (called "returns" or "echoes") provide
information on the distance to the target and the velocity
of the target, and also may provide information about the
shape of the target.
Real Time. Pertaining to the timeliness of data or
information that has been delayed only by the time required
for electronic communication. This implies that there are
no noticeable delays.
Reentry. The return of objects originally launched from
earth, into the atmosphere.
Reentry Phase. That portion of the trajectory of a
ballistic missile or space vehicle where there is a
significant interaction of the vehicle and the earth’s
atmosphere.
Reentry Vehicle (RV). 1. A structure designed to return
from exo-atmospheric flight through Earth’s atmosphere. 2.
Reentry vehicles are objects containing nuclear, chemical,
biological, or high explosive warheads. They are released
from the last stage of a booster rocket or from a post-
boost vehicle early in the ballistic trajectory. They are

107

likely thermally insulated to survive rapid heating during
reentry into the atmosphere.
Remote Track. A track that consists of data only from one
or more non-organic sensors.
Robust. Used in describing a system; indicates its ability
to endure and perform its mission against a responsive
threat. Also used to indicate system ability to survive
under direct attack.
Robustness. 1. The ability to produce correct results
despite input errors. 2. The existence of coordinated,
multiple capabilities that perform the same broad
task/mission. Provides the BMD warfighter with sufficient
flexibility to negate the specified threat with application
of a variable mix of ground and space-based systems.
Rules Of Engagement (ROE). Directives issued by competent
military authority which delineate the circumstances and
limitations under which United States forces will initiate
and/or continue combat engagement with other forces
encountered.
SBIRS High. SBIRS high altitude component consisting of
four SBIRS GEO satellites and infrared sensors on two HEO
satellites.
SBIRS Low. SBIRS low altitude component consisting of
SBIRS LEO satellites. The SBIRS Low component will be
designed to provide precision midcourse tracking and
discrimination data to support early interceptor commit,
in-flight target updates, and target object maps for a
National Missile Defense architecture. The SBIRS Low
component will also support the other mission areas of the
SBIR system.
Sensor. A device that responds to a physical stimulus (as
heat, light, sound, pressure, magnetism, or a particular
motion) and transmits a resulting impulse (as for
measurement or operating a control).
Sensor Data. Measurement information. For a passive sensor
it is usually irradiance, time, azimuth angle and elevation
angle. For an active sensor it may include range, Doppler,
cross section, etc., as well.
Sensor Fusion. Combining data and information from
multiple sensors, usually on different platforms.
Processing for doing this for two passive sensors is
sometimes called stereo fusion and for three passive
sensors, triocular or triple fusion. The term may also be
applied to passive-active or active-active fusion as well.

108

Sensor Network. 1. All external and internal ballistic
missile defense system sensors plus comms and sensor
netting used to communicate sensor data to algorithms,
processes, and people who use it. 2. All ballistic
missile defense system sensors, internal and external to
Missile Defense Agency.
Sensor Node. Sensor-netting node collocated with sensor
that provides target track and feature information to
sensor netting network and receives sensor tasking
information from it.
Shoot-Look-Shoot (SLS). A firing doctrine in which the
result of the first intercept attempt is assessed prior to
the launch of a subsequent interceptor. This tactic
requires the use of kill assessment by space or ground
based sensors but can significantly reduce interceptor
inventory requirements.
Short-Range Ballistic Missile (SRBM). A ballistic missile
with a range capability of 30 km to 1,000 km.
Short Wavelength Infrared (SWIR). Thermal radiation
emitted by a source in the electromagnetic spectrum
encompassing infrared wavelengths of 0.75 to 3 microns.
Shorting. With regard to the Sensor Net, it is the action
of sending tracks to the weapons platform at the same time
that they are sent through the TCC/TRC/TSC processing
loop.
Single Integrated Air Picture (SIAP). 1. The SIAP is the
product of sensor fused, common, continual, unambiguous
tracks of airborne objects in the surveillance area. Each
object in the SIAP has one, and only one, track number and
set of associated characteristics. The SIAP uses fused,
near real-time and real-time data, scalable and filterable,
to support situational awareness, battle management, and
airborne target engagements. 2. The SIAP (the air track
portion of the CTP) consists of common, continual, and
unambiguous tracks of airborne objects of interest in the
surveillance area. SIAP is derived from real time and near
real time data and consists of correlated air object tracks
and associated information. The SIAP uses fused near real
time and real time data, scaleable and filterable, to
support situation awareness, battle management, and target
engagements. 3. The SIAP is the product of fused, common,
continuous, unambiguous tracks of all airborne objects in
the surveillance area. Each object within the SIAP has
one, and only one, track number and set of associated
characteristics. The SIAP is developed from near-real-time
and real-time data, and is scaleable and filterable to

109

support situation awareness, battle management, and target
engagements. 4. As in 3) above plus … The SIAP is a subset
of the CTP, used by TAMD C2 and weapon control nodes to
share track and fire-control data.
Space Based Infrared System (SBIRS). SBIRS will be a
consolidated system that will meet United States infrared
space surveillance needs through the next 2-3 decades.
SBIRS is intended to be an integrated “system of systems”
including multiple space constellations and an evolving
ground element. The baseline SBIRS architecture consists of
four Geosynchronous Earth Orbit (GEO) satellites; two
sensors on Highly Elliptical Orbit (HEO) satellites; Low
Earth Orbit (LEO) satellites; a ground system consisting of
a CONUS-based Mission Control Station (MCS), a backup MCS,
a survivable MCS, and oversees relay ground stations and
re-locatable terminals; and associated communications
links. The SBIRS is designed to meet the missile defense,
missile warning technical intelligence, and battle space
characterization mission requirements identified in the
JROC-validated SBIRS Operational Requirements Document. The
SBIRS program will begin replacing the operational Defense
Support Program (DSP) ground segment in 1999 and begin
replacing the DSP satellites in 2002.
Space-Based Sensor. A system that provides global above-
the-horizon surveillance to detect and track PBVs, object
clusters (RVs and penaids), and resolved midcourse objects,
as well as below-the-horizon tasked hot spot detection of
boost phase missiles when cued by a space-based weapon or a
priori knowledge. It provides surveillance data for use in
situation assessment, operational intelligence collection,
and for cueing other sensor and weapon elements. During
midcourse, sensors discriminate and track RVs and
associated objects to support midcourse engagements.
Standard Missile. A shipboard, surface-to-surface/air
missile.
Surveillance. The systematic observation of an aerospace
area by a sensor system primarily for the purpose of
detecting an air vehicle, ballistic missile, or other
aerospace object. Some sensors that are referred to as
surveillance sensors also track air vehicles, ballistic
missiles, and other aerospace objects.
System. 1. The organization of hardware, software,
materials, facilities, personnel, data, and services needed
to perform a designated function with specified results,
such as the gathering of specified data, its processing,
and delivery to users. 2. A combination of two or more
interrelated equipment (sets) arranged in a functional

110

package to perform an operational function or to satisfy a
requirement.
System Architecture. The structure and relationship among
the components of a system. The system architecture may
also include the system’s interface with its operational
environment. A framework or structure that portrays
relationships among all the elements of missile defense
systems.
System of Systems (SoS). A set or arrangement of
interdependent systems designed to be interconnected in
various ways to provide capabilities beyond those systems
operating autonomously. Each component system is designed
with a “fall back” capability to operate autonomously, but
when operated as an interconnected set, their capabilities
are enhanced. The degree of interdependence can vary from
loosely coupled (federated) to tightly coupled
(integrated), but the capability of the set is always
greater than the sum of the elements operated autonomously.
Tactical Data Links. Near-real-time tactical
communications and information systems used primarily at
the coordination and execution level.
Tactical Digital Information Link (TADIL). A Joint Staff
approved, standardized communication link suitable for
transmission of digital information. Current practice is
to characterize a tactical digital information link (TADIL)
by its standardized message formats and transmission
characteristics. TADILs interface two or more command and
control or weapons systems via a single or multiple network
architecture and multiple communication media for exchange
of tactical information.
TADIL A. A secure, half-duplex, netted digital data link
utilizing parallel transmission frame characteristics and
standard message formats at either 1364 or 2250 bits per
second. It is normally operated in a roll-call mode under
control of a net control station to exchange digital
information among airborne, land-based, and shipboard
systems. NATO’s equivalent is Link 11
Target. 1. Same as defined for an object. 2. An object of
interest rather than just any type of object.
TBM. Tactical/Threat Ballistic Missile
TBMD. Tactical/Theater Ballistic Missile Defense
Theater Ballistic Missile Defense (TBMD) System. The
aggregate TMD C3I and TBMD forces that, in total, provide
defense against ballistic missile attacks within an
overseas theater of operations.

111

THAAD. Theater High Altitude Area Defense
Terminal Phase. That final portion of a ballistic
missile's trajectory between the midcourse phase and
trajectory termination.
Track. 1. The estimated position/velocity states and a
representation of the uncertainty of the estimate (and
possibly additional non-kinematic attribute information)
for an object or unresolved cluster of objects based on
filtered observations from one or more sensors. 2. The
estimated trajectory of an apparent object or group of
objects. 3. The sequence of observations judged to be from
the same object or group of objects.
Track Correlation. Process of associating multiple tracks
from each of two different sensors and determining track
pairs that represent the same objects. Track data
(position, velocity, signature attributes, etc.) from one
sensor are compared with those from the second sensor.
Prevents/eliminates dual designations. Correlated track
pairs can be combined to refine target position/velocity
estimates.
Track File. A dataset that contains data associated with a
target track, including metric measurements, signature
data, state estimate, covariance matrix, track quality,
class/type, and other attributes of the target.
Track Fusion. Merging of 2D tracks or 3D tracks from
different sensors to form more precise 3D tracks.
Track Quality. A quantitative or qualitative measure of
the reliability or credibility of a track.
Tracking. Following a target in angle, range, and Doppler.
Usually involves measuring target position, smoothing
position measurements to obtain a more accurate assessment
of target position, predicting target position ahead in
time, and using that prediction to gather next sample
measurement.
Track Initiation. The process of inferring new target
trajectories. It typically consists of the association of
several detections over time and a decision that accepts
these detections as having originated from the same target.
Track Update. The combination of a track and an
observation to form a revised track.
Triangulation. The process by which the range to a target
is inferred from observations from two or more sensors.
Compare: passive ranging.

112

Universal Time. A measure of time that conforms, within a
close approximation, to the mean diurnal rotation of the
Earth and serves as the basis of civil timekeeping.
Universal Time (UT1) is determined from observations of the
stars, radio sources, and also from ranging observations of
the moon and artificial Earth satellites. The scale
determined directly from such observations is designated
Universal Time Observed (UTO); it is slightly dependent on
the place of observation. When UTO is corrected for the
shift in longitude of the observing station caused by polar
motion, the time scale UT1 is obtained. When an accuracy
better than one second is not required, Universal Time can
be used to mean Coordinated Universal Time. Also called
ZULU time. Formerly called Greenwich Mean Time.
Weapons Allocation. Designation of a certain weapon to
attack a certain threat after Engagement Authorization is
given.
Weapons Assignment. In air defense, the process by which
weapons are assigned to individual air weapons controllers
for use in accomplishing an assigned mission. Assignment of
a particular interceptor to a particular target.
Weapons Control. The varying degree of formal control an
area air defense commander exercises over all air defense
weapons in his area of responsibility.
Weapons of Mass Destruction (WMD). In arms control usage,
weapons that are capable of a high order of destruction
and/or of being used in such a manner as to destroy large
numbers of people.
Weapons System. Items that can be used directly by the
armed forces to carry out combat missions and that cost
more than $100,000 or for which the eventual total
procurement cost is more than $10,000,000. That term does
not include commercial items sold in substantial quantities
to the general public.
Weapon System Control. That set of assessment, decision,
and direction functions normally implemented automatically
to assure that individual weapons are pointed, fired, and
guided as necessary to intercept the designated attackers.

113

APPENDIX B. VISION DOCUMENT

Ballistic Missile
Defense System

(BMDS)

Vision Document
Version 1.0

114

Revision History

Date Revision Description Author
03/27/2003 1.0 Initial Version Babbitt
12/01/2003 1.0 Thesis Update Miklaski

115

1. Introduction.

1.1 Purpose of Document.

This document outlines the high-level user requirements and
features of the Ballistic Missile Defense System (BMDS).

1.2 Product Overview.

BMDS will enable the United States, its allies, and friends
to detect, track, assign weapons to, engage, and assess the
kill of threat ballistic missiles in the boost, mid-course
and terminal phases of missile flight in a rapid,
coordinated, and effective manner.

1.3 References.

Refer to Thesis Appendix B.

2. Problem Statement

3. User Description.

3.1 User Demographics.

The BMDS Battle Managers do not have a tool that supports
ballistic missile defense operations for detecting,
tracking, assigning weapons, engaging, and assessing the
kill of threat ballistics missiles from potential
adversaries.

 Problem
The problem of Current BMD efforts are

uncoordinated and lack the ability
to respond quickly to potential
threats

affects The U.S.’s confidence in its
ability to defend against missiles
and, ultimately, the safety,
security, and prosperity of the
free world

The impact of which
is

Allows rogue states and entities to
blackmail or attack free nations

a successful solution
would be

To field a system that will counter
the ballistic missile threat with a
high level of confidence

116

3.1.1 Northern Command Battle Managers.

3.1.2 Strategic Command Battle Managers.

3.1.3 Combatant Commanders Battle Managers.

3.1.4 Assigned Forces Battle Managers.

3.2 User Profiles.

3.3 User Environment.

3.4 Key User Needs.

The BMDS Battle Managers require the following
capabilities:

3.4.1 Detect the launch of a threat ballistic missile.
3.4.2 Determine whether the detected object is a threat.
3.4.3 Define the characteristics of the threat ballistic
missile.
3.4.4 Develop a firing solution to negate the threat
ballistic missile.
3.4.5 Engage the threat ballistic missile.
3.4.6 Assess the kill of the threat ballistic missile.

3.5 Alternatives.

Without such a tool, current battle management functions
will remain autonomous functions that are independent of
each other.

117

System Boundary

4. Product Overview.

Product Perspective. The below diagram depicts the BMDS
virtual simulation and its external interfaces.

The diagram on following page represents the functional
aspects of the BMDS Kill Chain. The Battle Manager must
address the battle management functions identified on the
BMDS Kill Chain.

Refer to Thesis Chapter 4 for Kill Chain Description.

5. Use Cases.

Refer to Thesis Chapter 4 for description of BMDS Use
Cases.

BMDS

BMDS IR Sensors

 BMDS C2BMC

Senior
Decision Maker

Battle Manager

BMDS Radar Sensors

BMDS Weapons

118

6. Feature Attributes.

The table below contains the feature attributes that we
will use to evaluate the features, track the continued
feature definition, prioritize the risk, and manage the
feature requirements.

Feature Attribute Scale
Status Designed, Approved, Proposed
Realization Full, Partial, Limited
Priority Critical, Important, Useful
Complexity High, Medium, Low
Risk: Probability of
Occurrence

High, Medium, Low

Risk: Consequence of
Occurrence

Catastrophic, Significant,
Minor

Stability High, Medium, Low

7. Product Features.

7.1 Forward-based sensing.

Within BMDS we must design the capability to employ
forward-based sensors to pickup the IR detection of a
threat ballistic missile. Without this capability, the
BMDS Battle Managers will not have the ability for tracking
the threat ballistic missile from booster burnout through
the mid-course and terminal phases of missile flight. This
situation would result in track discrimination and a first
shot opportunity either late in the mid-course phase or in
the terminal phase.

7.2 Track correlation.

Given that two or more radars may provide real-time track
data for a single threat ballistic missile, BMDS must be
able to match this track data so that each threat ballistic
missile in flight results in a single, accurate reported
track in the battle management system.

7.3 Common Time Reference.

All sensors employed by BMDS must have a common time
reference to provide accurate track data for track
correlation algorithms.

119

7.4 Common Navigation Reference.

All sensors employed by BMDS must employ a common geodetic
navigation scheme to ensure accurate position, velocity,
and altitude adjustments in real-time threat ballistic
missile tracking.

7.5 Sensor Registration.

All sensors employed by BMDS must have a common alignment
reference to ensure the correct geodetic alignment of the
sensors for the objective of establishing gridlock.

7.6 Cueing.

BMDS must have the capability to direct sensors it employs
to adjust radar field-of-views towards IR-detected track.

7.7 Discrimination.

BMDS must have the capability to accurately discriminate in
real-time the threat ballistic missile from other objects
such as deployed countermeasures and debris. BMDS must
provide the discrimination processes through all phases of
threat ballistic missile flight.

7.8 Multi-Sensor Data Fusion.

BMDS must have the capability to fuse data from multiple,
autonomous sensors with the intent of forming a more
accurate estimation of the environment than is available
from any single sensor. The data fusion capability is time
critical, covers a large geographical area, and requires
accurate, reliable information at completion.

7.9 Information Assurance.

Information within BMDS must be secure both in transfer and
processing to ensure data integrity throughout the kill
chain. Network and information services must ensure
confidentiality and availability.

7.10 Assurance of Kill.

BMDS must provide assurance of kill within statistically
acceptable limits.

120

7.11 Speed of Engagement.

BMDS must provide the ability to simultaneously respond to
multiple missile launches and assigned available weapons
faster than a human controller executing the same process.
This must be done within the framework of system weapons’
engagement windows.

7.12 Automatic Weapons Assignment.

BMDS must have the capability to automatically match its
weapon capabilities and threat missile profiles in such a
fashion that assets are properly assigned to ensure the
maximum chance of destroying the threat missile or
missiles.

7.13 Situational Awareness.

BMDS must provide real time, fine grain situational
awareness to battle managers responsible for the kill chain
in each portion of a threat missile’s flight as well as
near real time, accurate rough grain situational awareness
to all battle managers not in the geographic path of flight
or without responsibility for the managing of the kill
chain pertinent to a particular missile. This must be done
on a threat-by-threat basis.

7.14 Fault Tolerance.

BMDS must be capable of continuing operation in a degraded
mode following a catastrophic failure or loss of any of its
individual elements in a dynamic fashion, providing the
remaining elements the ability to continue without the lost
element(s).

7.15 Cooperative and Autonomous Modes.

The structure of BMDS must support autonomous (independent)
action at the lowest level where the entire kill chain can
be executed. It must also support low cooperative, high
cooperative, and fully cooperative modes of command and
control.

7.16 Combined Operation with Coalition Forces.

BMDS must provide a means for the U.S. to coordinate its
efforts with the forces of our allies and friends.

7.17 Dynamic Reconfigurability.

121

As BMDS enabled and integrated assets move from one
entity’s control to another entity’s control, they must
seamlessly integrate into the new control structure.

8.Constraints.

To be determined.

9. Performance Requirements.

To be determined.

10. Dependencies.

To be determined.

11. Documentation Requirements.

To be determined.

12. Issues.

To be determined.

13.Glossary.

Refer to Thesis Appendix A

122

THIS PAGE INTENTIONALLY LEFT BLANK

123

APPENDIX C. SRS DOCUMENT

Ballistic Missile
Defense System

Software Requirements Specification

(SRS)
Version 1.0

124

Revision History

Date Revision Description Author
03/27/2003 1.0 Initial Version Miklaski
12/01/2003 1.0 Thesis Update Miklaski

125

Table of Contents

1.0 Introduction

1.1 Purpose
1.2 Scope
1.3 References
1.4 Assumptions and Dependencies

2.0 Use Case Model Survey
3.0 Actor Survey
4.0 Requirements

4.1 Functional Requirements
4.1.1 Sensors

` 4.1.2 Weapons
 4.1.3 Command and Control
4.2 Nonfunctional Requirements

4.2.1 Usability
4.2.2 Reliability
4.2.3 Performance
4.2.4 Supportability

5.0 User Documentation
6.0 Design Constraints
7.0 Interface Components
8.0 Interfaces

8.1 User Interfaces
8.2 Hardware Interfaces
8.3 Software Interfaces
8.4 Communications Interfaces

9.0 Appendix
9.1 Use Case Diagrams
9.2 System Sequence Diagrams
9.3 Domain Model
9.4 Glossary

126

1.0 Introduction.

1.1 Purpose.

The purpose for this Software Requirements Specification
(SRS) is to define the requirements for the Ballistic
Missile Defense System (BMDS). The SRS includes Use Cases,
System Sequence Diagrams, System Operations Contracts,
Domain Model and all related support documentation to
describe the functionality of the BMDS. The design team of
CDR Michael Miklaski and CPT Joel Babbitt has prepared the
SRS and its related documentation.

1.2 Scope.

The BMDS is being developed via a system-of-systems
approach to better integrate sensors, weapons and command
and control nodes into a single coherent command and
control structure. BMDS requires an advanced and highly
complex command and control element to effectively
integrate system segments and execute battle management
functions. The BMDS architecture is designed to accept
enhanced capabilities as they are integrated into the BMDS,
to achieve full interoperability of the system elements and
interfaces with external systems and integrates the system
with the national military command structure.

1.3 References.

See Thesis Appendix B.

1.4 Assumptions and Dependencies.

1.4.1 Assumptions.

1.4.1.1 Non-instantiation. No specific system is used to
define the class. All sensors, weapons, and C3 structures
are generic in nature and have only those attributes that
define the common functionality.

1.4.2 Dependencies.

1.4.2.1 Kill Chain. The flow of events is dictated by the
logical sequence represented in the Kill Chain Diagram (see
9.3.1)

127

2.0 Use Case Model Survey.

See Thesis Chapter 4.

3.0 Actor Survey.

Sensors – Within the sensor actors’ category there are two
subcategories. The first is Passive Infrared Sensors; the
second is Active Radar Sensors. Within each of these
subcategories are the platform on which they reside; Space
Based, Aircraft Based and Surface Based.
The current state of Spaced Based Sensors are satellite
buses with Infrared (IR) sensor payloads that can detect
and track the heat from the plume of a ballistic missile
during the launch and boost phase. There are currently
only passive IR sensors in Space, which can only provide
lines of bearing and altitude. Precise ranging is not
feasible unless some form of triangulation occurs with
other Sensors. Research is being conducted to determine if
the specific heat signature of the ballistic missile can
identify the actual type of missile launched. Additional
research is being conducted to determine the feasibility of
“cold body” tracking of ballistic missile. This is when
the missile is in the cruise phase and the IR signature is
reduced through the cooling of the skin by the cold
temperatures of space. The primary mission of Space Based
Sensors is to provide initial cueing information to active
sensors and to determine, based on launch position and
angular motion, the intended target location.

Airborne Sensors consist of both passive IR and active
radar systems. The developmental Airborne Laser System
functions in much the same way as the Space Based Sensor
with the exception of being able to determine range based
on it’s Laser Detection and Ranging (LADAR) system. Other
Airborne Based Sensors consist of active radars and passive
IR sensors onboard aircraft.

Surface Based Sensors consist of existing active radars
associated with Patriot, THAAD, AEGIS, National Systems,
and developmental X-Band radar that can track ballistic
missiles during the different stages of flight. This
category encompasses both ground and sea based sensor
platforms.

Weapons – Three separate subsets, ballistic, semi-active
homing and active homing define the weapons actors. The
weapons may have an explosive payload, be a Directed Energy
weapon, or a Kinetic Kill Vehicle (KKV). Ballistic weapons

128

require the weapons system to develop a collision intercept
solution prior to deploying the weapon, then firing the
weapon along a trajectory that will consummate an impact
with the threat ballistic missile. Semi-active weapons
require that the weapons system utilize an active sensor,
normally Continuous Wave (CW) Radar, to illuminate the
threat missile and the weapon guides on the return signal
until end game. Active weapons receive queuing data from
the weapons system prior to launch and will initially track
the target in the same way as the semi-active weapon until
it can acquire the target with its own active radar. Once
it acquires the target with its own radar it will
discontinue semi-active and guide to the target utilizing
its own information.

Command and Control – These actors encompass all existing
command and control nodes from the National Level, such as
STRATCOM and SPACECOM, to the tactical commander level,
such as Joint Forces Air Component Commander (JFACC),
Carrier Battle Group Commanders (CVBG), Regional Air
Defense Commanders (RADC), etc. The level of information
provided to the commanders is based on hierarchy. The
lower levels of command will require the most current and
accurate information to prosecute the destruction of Threat
Ballistic Missiles (TBM’s) and will need to receive time-
critical and precise parametric tracking data to achieve
that goal. Upper levels generally require only situational
awareness information and will not need precise information
such as parametric data and instead will be provided those
necessary data to ensure proper execution for command and
control functionality. The need to know either high level
or lower level information is determined by if one is
involved in the kill chain for a missile and where the
missile is in the phases (boost, midcourse, terminal).

Threat Ballistic Missiles – For the purposes of our
requirements specifications the category of ballistic
missile will include only those missiles that travel
through the exo-atmospheric region of space. This excludes
short-range tactical missiles that remain in the endo-
atmospheric region.

4.0 Requirements

4.1 Functional Requirements

4.1.1 Sensors

4.1.1.1 IR

129

4.1.1.1.1 Determine own position and global time accurately
4.1.1.1.2 Detect the plume of a launching ballistic missile
4.1.1.1.3 Track a ballistic missile from heat signature
4.1.1.1.4 Identify type of missile from heat signature
4.1.1.1.5 Accept queuing from external sources
4.1.1.1.6 Provide queuing information to external sensors
4.1.1.1.7 Develop a ballistic missile track
4.1.1.1.8 Continuously track missile through field of view
4.1.1.1.9 Determine launch position of detected Ballistic
Missile
4.1.1.1.10 Determine Predicted Impact Point (IPP)
4.1.1.1.11 Transmit all known track data and own unit
position to external units.

4.1.1.2 Radar

4.1.1.2.1 Determine own position and global time accurately
4.1.1.2.2 Accept queuing information from external sources
4.1.1.2.3 Detect ballistic missile in flight
4.1.1.2.4 Track ballistic missile in flight
4.1.1.2.5 Develop a ballistic missile track
4.1.1.2.6 Provide track information to external sources
4.1.1.2.7 Provide weapons quality parametric data to
weapons system
4.1.1.2.8 Continuously track missile through field of view
4.1.1.2.9 Provide queuing information to external sensors
4.1.1.2.10 Transmit all known track data and own unit
position to external units.
4.1.1.2.11 Assess kill

4.1.2 Weapons

4.1.2.1 Ballistic

4.1.2.1.1 Determine own position and global time accurately
4.1.2.1.2 Accept queuing information from external sources
4.1.2.1.3 Accept target tracking parametric information
from sensors
4.1.2.1.4 Develop a collision intercept solution
4.1.2.1.5 Slew the weapon to corresponded to the intercept
solution
4.1.2.1.6 Fire projectile

4.1.2.2 Semi Active

4.1.2.2.1 Determine own position and global time accurately
4.1.2.2.2 Accept queuing information from external sources
4.1.1.2.3 Accept target tracking parametric radar
information from sensors

130

4.1.1.2.4 Develop a collision intercept solution
4.1.1.2.5 Slew weapon seeker head to target
4.1.1.2.5 Fire missile
4.1.1.2.5 Home to target with return radar signal from
sensors

4.1.2.3 Active

4.1.1.3.1 Determine own position and global time accurately
4.1.1.3.2 Accept queuing information from external sources
4.1.1.3.3 Accept target parametric radar data from sensors
4.1.1.3.4 Develop a collision intercept solution
4.1.1.3.5 Slew weapon seeker head to target
4.1.1.3.3 Fire weapon
4.1.3.3.3 Track in a semi-active mode based on return radar
signal from sensors
4.1.3.3.4 Acquire target with missile own radar
4.1.3.3.5 Discontinue semi-active tracking upon own radar
lock and assume collision intercept based on missile own
radar parametric data

4.1.3 Command and Control

4.1.3.1 Upper Level.

4.1.3.1.1 Accept Situational Awareness tracking data from
all external sources to develop a single Common Operational
Picture
4.1.3.1.2 Transmit commands to Lower Level C2 nodes
4.1.3.1.3 Receive reply messages from Lower Level C2 Nodes

4.1.3.2 Lower Level.

4.1.3.2.1 Accept tracking data from all external sources to
develop a single Common Operational Picture
4.1.3.2.2 Fuse all sensor data into a single actionable
firing solution
4.1.3.2.3 Transmit all Situational Awareness tracking data
to Upper Level C2 Nodes
4.1.3.2.4 Accept command messages from Upper Level C2 Nodes
4.1.3.2.5 Transmit reply messages to Upper Level C2 Nodes

4.2 Nonfunctional Requirements.

4.2.1 Usability.

To be determined.

4.2.2 Reliability.

131

To be determined.

4.2.3 Performance.

To be determined.

4.2.4 Supportability.

To be determined.

5.0 User Documentation.

To be determined.

6.0 Design Constraints.

To be determined.

7.0 Interface Components.

To be determined.

8.0 Interfaces.

8.1 User Interfaces.

To be determined.

8.2 Hardware Interfaces.

To be determined.

8.3 Software Interfaces.

To be determined.

8.4 Communications Interfaces.

To be determined.

9.0 Appendix.

9.1 Use Case Diagrams.

See Thesis Chapter 4.

9.2 System Sequence Diagrams.

132

See Thesis Appendix E.

9.3 Domain Models.

9.3.1 BMDS Kill Chain Functions.

See Thesis Figure 1.

9.3.2 BMDS Distributed C2 Architecture.

See Thesis Figure 5.

9.4 System Operations Contracts.

To be determined.

9.5 Glossary.

See Thesis Appendix A for Glossary.

133

APPENDIX D. SYSTEM SEQUENCE DIAGRAMS (SSD)

A. SSD FOR HIGH-LEVEL BMDS USE CASE

This SSD (Figure 14) represents the high-level

interaction of the sensors, weapons, and BMC2 through the

five major phases of the kill chain in the prosecution a

threat ballistic missile to include deliberate planning and

cueing. The details of this SSD are further defined in the

follow-on SSD for all the use cases. The flow of events as

described in the use cases and messaging between the

objects is as depicted, a BMC2 will provide planning and

cueing to sensors in response to a potential threat. The

sensors conduct surveillance until a TBM is detected where

it then conducts tracking, passing that information both to

the BMC2 and weapons systems. The BMC2 assigns a weapon

based on the track data, the selected weapon system engages

the threat ballistic missile destroying it, and the BMC2

assesses the outcome of the engagement via the sensor track

data to determine whether further engagements are

warranted.
B. SSD FOR USE CASE 1 & 1.1

The flow of events for the SSD covering use cases 1 &

1.1 (Figure 15) begins with the assumption that a ballistic

missile threat exists and that there is a sufficient amount

of time to conduct deliberate planning prior to the

anticipated first available launch window. In this

instance the commanders, via the BMC2 and Sensor Net, issue

a warning in the form of cueing messages for sensors to

observe a specific region. Once a TBM is detected, the

sensor commences continuous tracking of the missile and

forwards a cueing message to the BMC2 and Sensor Net so

that other sensors can detect and track the TBM.

134

The sensor must first develop a local track, through

whatever processing method that particular sensor utilizes,

and then it forwards that data to its associated Sensor

Fusion Processor. The SFP receives all of the track data

from the various sensors and attempts to both discriminate

what type of missile it is and whether any countermeasures

have been employed, to detect the warhead from the decoys.

The data is further filtered and then fused into one

coherent track and forwarded to the Sensor Net for

utilization by C2 elements and Weapons systems.
C. SSD FOR USE CASE 2

Once a sensor has developed a track, it is

cooperatively tracked and classified as described by the

flow of events in the SSD for use case no. 2 (Figure 16).

The Sensor Fusion Processor continues to evaluate the track

in an effort to determine the identity of the missile

through the various electronic signatures from the sensors

and attempts to refine and improve the track quality by

pulling available data from the Sensor Net and making

comparisons of the data. This updated data is forwarded to

the BMC2. The BMC2 maintains a master track list is

developed and pushes the track data to the Weapons Net for

use in the weapons bidding process. The BMC2 forwards an

appropriate cueing message to remote Sensor Nets as the TBM

transits from sensor coverage area to another.

D. SSD FOR USE CASE 3

The SSD for use case 3 (Figure 17) shows the process

for weapons bidding of the weapons systems. As the target

list is produced by BMC2 and pushed out to the Weapons Net,

the Weapons Net places bid requests for each target to each

of the Weapons Systems participating in the network. The

Weapons System makes an assessment of it’s own ability to

prosecute the target and forwards that information to BMC2

135

via the Weapons Net. The BMC2 then makes a weapons

assignment based on the bids and an authorization to

release weapons at the appropriate time.

E. SSD FOR USE CASE 4

Once a Weapons System has been identified for missile

engagement, that systems requests a discrete priority path

for parametric track data from the Sensor Net as depicted

in SSD for use case no. 4 (Figure 18). This data is then

provided to the interceptor for consummation of the

intercept and destruction of a TBM once launch approval is

given.
F. SSD FOR USE CASE 5

SSD for use case 5 (Figure 18) depicts the flow of

events in the process of assessing the status of an

intercept of a TBM. The BMC2 utilizes track data provided

via the Sensor Net and conducts an assessment of that data

as described in use case no. 5 and promulgates a kill

report for distribution if the intercept was successful.

136

Figure 17. SSD for High-Level Use Case

137

Figure 18. SSD for Use Case 1 & 1.1

138

Figure 19. SSD for Use Case 2

139

Figure 20. SSD for Use Case 3

140

Figure 21. SSD for Use Case 4

141

Figure 22. SSD for Use Case 5

142

THIS PAGE INTENTIONALLY LEFT BLANK

143

APPENDIX E. UML-RT MODELS

A. SENSOR

Figure 23. Sensor UML-RT Diagram

Cueing Capsule: Passes cues received by the Track

Forming Capsule directly to the Sensor Net.

Orientation Capsule: Controls the orientation and

scanning patterns of the sensor. It receives messages from

the Sensor Controlling Command and acts on them.

Track Forming Capsule: Forms tracks from radar or IR

hits. Sends Cues to the Cueing Capsule. Performs track

discrimination to try to prevent debris and decoys from

overloading the SFP. Once a track is adequately developed,

it pushes it to the SFP Interface Capsule.

144

SFP Interface Capsule: Responsible for pushing tracks

from the Track Forming Capsule to the sensor’s higher SFP.

B. SENSOR CONTROLLING AUTHORITY

Figure 24. Sensor Controlling Authority UML-RT Diagram

Cueing Capsule: Passes cues received by Sensor Net to

the Sensor Command Capsule.

Orienting Capsule: Issues commands to control the

orientation and scanning patterns of subordinate sensors.

It distributes commands from the Sensor Command Capsule.

Sensor Command Capsule: Receives cues from the Cueing

Capsule and issues command to redirect sensor(s).

145

C. COMPETENT AUTHORITY

Figure 25. Competent Authority UML-RT Diagram

Cueing Capsule: Passes cues to the Sensor Net.

146

D. SENSOR FUSION PROCESSOR (SFP)

Figure 26. Sensor Fusion Processor UML-RT Diagram

Sensor Net Interface Capsule: Responsible for pushing

tracks from the Track List Capsule to the Sensor Net.

Receives tracks requested by the Collaborative Fusion

Capsule through Sensor Net from other SFPs.

Track Fusing Capsule: Takes multiple tracks per

target from the Sensor Interface Capsule, correlates or

fuses them into one single track per target in real time.

Performs track discrimination as a backup to the sensor’s

native discrimination capability to prevent overload on the

Sensor Net.

Sensor Interface Capsule: Serves as the primary

interface to all assigned Sensors. If it is receiving data

from more than one sensor, then it sends all tracks to the

147

Track Fusing Capsule. If it is only receiving data from

one sensor, then it passes it directly to the Collaborative

Fusion Capsule.

Collaborative Fusion Capsule: Takes fused or raw

local tracks (one per target) and fuses them with tracks

received from other SFPs via the SFP Interface Capsule of

the Sensor Net.

Track List Capsule: Responsible for compiling and

providing the internal list of tracks for the SFP and

preventing duplicates. It provides this data to both the

TFC and the CFC. It provides this information upon request

to the sensor net. It also serves as a repository for

commands received from Sensor Net.

E. SFP’S SENSOR INTERFACE CAPSULE

Figure 27. Sensor Interface Capsule UML-RT Diagram

148

Sensor Communications Capsules: Establish connections

with sensors. It only allows connections from those

sensors it is programmed to receive. Every time a sensor

passes a track, the SCC checks the state machine to

determine where to send its track data. If more than one

SCC checks in a short period of time (say within 100 ms or

less) then the output of the state machine turns to true.

The state machine will also output true if an SCC is unable

to send its data to the CFC Communications Capsule (as

another sensor already has the channel tied up).

TFC Communications Capsule: Handles all data streams

sent from the Sensor Communications Capsules to the (higher

level) Track Fusing Capsule.

CFC Communications Capsules: Handles only one data

stream sent from one Sensor Communications Capsule to the

(higher level) Collaborative Fusion Capsule.

149

F. SFP’S TRACK FUSING CAPSULE

Figure 28. Track Fusing Capsule UML-RT Diagram

Fusing/Correlation/Discrimination Capsule: This

capsule periodically checks each incoming track with the

(higher level) Track List Capsule via the TLC

Communications Capsule. If a ‘stop sending’ is received

that pertains to the parent SFP, then the Fusing Capsule

ceases dealing with that track until the ‘stop sending’ is

lifted. Before Fusing or Correlation happens,

Discrimination occurs to try to filter out the clutter and

reduce the amount of tracks passed on through the rest of

the Sensor Fusion Processor. Remaining tracks that pertain

to targets that are new or do not have a stop order against

them are then fused in real-time and forwarded to the

(higher level) Collaborative Fusion Capsule.

150

TLC Communications Capsule: Checks all incoming

tracks against the (higher level) Track List Capsule. If

that track has a ‘stop sending’ order for the parent SFP,

then the order will be passed to the

Fusing/Correlation/Discrimination Capsule, thereby allowing

the Fusing/Correlation/Discrimination Capsule to spend its

processing power on fusing other capsules. If the track is

new, it will be registered with the (higher level) Track

List Capsule.

SIC Communications Capsule: Handles all data streams

received from the (higher level) Sensor Interface Capsule.

CFC Communications Capsules: Handles all data streams

from the Fusing Capsule sent to the (higher level)

Collaborative Fusion Capsule.

151

G. SFP’S COLLABORATIVE FUSING CAPSULE

Figure 29. Collaborative Fusing Capsule UML-RT Diagram

State Machine: Contains the logic to decide whether

it is worthwhile to pursue attempting to collaboratively

fuse a track. This state machine contains several factors

which would have to all be within acceptable parameters for

it to allow collaborative fusion to occur. To reiterate in

terms of a logical equation, it is an AND logic equation

(for example: network usage AND track type fusible AND

better fusible remote track available AND track moving slow

enough AND pre-defined quality threshold not met).

Fusing Capsule: Checks each incoming track with the

(higher level) Track List Capsule via the TLC

Communications Capsule. If a ‘stop sending’ order is

152

received that pertains to the parent SFP, then the Fusing

Capsule checks with the state machine to determine whether

it should either cease dealing with that track until the

‘stop sending’ is rescinded or attempt to improve the track

through collaborative fusion. Tracks that pertain to

targets that are new or do not have a stop order against

them are forwarded to the Sensor Net. If collaborative

fusion is ordered for a ‘stop sending’ track, then the

Fusing Capsule will suppress the ‘stop sending’ in the

local (higher level) Track List Capsule. This allows the

track to flow through the (higher level) Track

Fusing/Correlation/Discrimination Capsule. Additionally,

the Fusing Capsule will request a copy of the winning track

through the Sensor Net and will fuse it with its current

track. If the collaboratively fused track will beat the

previous winning track, then it sends the track and

continues to suppress the ‘stop sending’ in the local Track

List Capsule until the Sensor Net feedback comes back to

authoritatively either continue the ‘stop sending’ on the

collaboratively fused track or allow it to send. If the

(parent) Collaborative Fusion Capsule is receiving tracks

directly from the (higher level) Sensor Interface Capsule,

then the Collaborative Fusion Capsule will also perform

additional discrimination as necessary. However, local

fusion as performed by the (higher level) Track

Fusing/Collaboration/Discrimination Capsule is of course

not possible for a single sensor’s input, as it requires at

least two separate tracks to fuse..

TLC Communications Capsule: Checks all incoming

tracks against the (higher level) Track List Capsule. If

that track has a ‘stop sending’ order for the parent SFP,

then the order will be passed to the Fusing Capsule. If

153

the track is new, it will register it with the (higher

level) Track List Capsule.

SIC-TFC Communications Capsule: Handles all data

streams received from the (higher level) Sensor Interface

Capsule and Track Fusing Capsule.

SNIC Communications Capsules: Handle all data streams

from the Fusing Capsule sent to the (higher level) Sensor

Net Interface Capsule.

H. SFP’S TRACK LIST CAPSULE

Figure 30. Track Capsule List UML-RT Diagram

TFC-CFC Communications Capsule: Handles all data

streams received from the (higher level) Track

Fusing/Correlation/Discrimination Capsule and Collaborative

Fusing Capsule.

154

Track Correlation Capsule: Correlates all tracks

received with Track Registry Capsule. Tracks, which are

not screened out, are registered as new tracks with the

Track Registry Capsule. Track numbers of tracks that are

screened out are returned to the (higher level) Track

Fusing/Correlation/Discrimination Capsule or (higher level)

Collaborative Fusing Capsule, depending on where the track

came from.

Track Registry Capsule: Maintains the SFP’s master

list of all perceived valid tracks as well as any

additional tracks received from the Sensor Net, including

any commands added to received tracks or commands

pertaining to the locally maintained tracks.

Track List Receiving Capsule: Receives the Track List

sent out periodically from the (higher level) Sensor Net.

155

I. SFP’S SENSOR NET INTERFACE CAPSULE

Figure 31. Sensor Net Interface Capsule UML-RT Diagram

Sensor Net Communications Capsule: Establishes

connections with the Sensor Net. It handles all

communications between the parent SFP and the Sensor Net.

CFC Communications Capsule: Handles all data streams

between the Sensor Net Communications Capsule and the

(higher level) Collaborative Fusion Capsule.

TLC Communications Capsules: Handle only one data

stream sent from the Sensor Net Communications Channel to

the (higher level) Track List Capsule.

156

J. SENSOR NET

Figure 32. Sensor Net UML-RT Diagram

SFP Interface Capsule: Handles all interfaces between

the SFPs and Sensor Net, including receiving fused track

data, handling requests for fused data from peer SFPs, and

forwarding said fused data as it is received in real time,

passing track data to the Track Correlation Capsule, and

receiving and forwarding track lists from the Track Server

Capsule. This capsule also ‘shorts’ (sends before

processing through the TCC/TRC/TSC loop) copies of

streaming firing-solution quality data to the Weapon

Platform Interface Capsule if a track is marked as ‘hot’

(i.e., tracks which have a weapon awaiting a firing

solution to launch).

Cueing Capsule: Receives cueing messages through the

Track Correlation Capsule from Trusted Sources. It checks

157

these cueing messages against the current Track List. If

the referenced track does not correlate to a track on the

list, the Cueing Capsule then passes these cueing messages

to the Sensor Controlling Commands for diffusion to the

various sensors.

Track Correlation Capsule: Takes all fused tracks and

correlates them with the Track Registry. This correlation

consists of screening out multiple instances of the same

track by comparing the quality of fused tracks from

multiple SFPs.

Track Registry Capsule: Maintains the SFP’s master

list of all perceived valid tracks. Note: All changes in a

track’s status are maintained (“killed,” “active,”

“inactive,” etc).

Track Server Capsule: Responsible for providing

BMC2s, Weapons Net, Sensor Fusion Processors, and peer

Sensor Nets with a Track List. It constantly receives an

updated track list from the Track Registry Capsule and then

communicates it to all requesting entities. It receives

‘hot’ notifications from Weapon Platforms (i.e., tracks

which have a weapon awaiting a firing solution to launch)

and, if it is a valid track, directs the SFP Interface

Capsule to short the winning version of that track directly

to the Weapon Platform Interface Capsule as well as

continuing to push it to the Track Correlation Capsule.

Weapon Platform Interface Capsule: This capsule

provides the latest firing-solution quality track data to

requesting weapons platforms upon demand.

Peer/Higher Interface Capsule: Pushes the track list

in the form of either low-detail tracks (i.e., those with

no parametric data) to Peer Sensor Nets or unmodified

158

tracks to the BMC2. It receives their lists (peer Sensor

Nets) or modifications to a Track (BMC2) and passes them to

the Track Correlation Capsule for integration into the

Track Registry.

Some Areas of Potential Conflict:

-What if a Weapon Platform requests a track and it is

‘inactive’ on the track list?

-What if a Weapon Platform comes looking for a track

and it is delayed due to processing through the Sensor Net

capsules? Can we ensure no delay is introduced yet firing

solution quality of provided tracks is maintained?

K. SENSOR NET’S SFP INTERFACE CAPSULE

Figure 33. SFP Interface Capsule UML-RT Diagram

159

TSC Communications Capsule: Handles the data stream

between the (higher level) Track Server Capsule and the

Sensor Fusion Processor Communications Capsule. The track

list and all ‘short’ commands from the (higher level) Track

Registry Capsule are passed to the Request Registry

Capsule.

TCC Communications Capsule: Passes tracks from the

Sensor Fusion Processor Communications Capsule to the

(higher level) Track Correlation Capsule.

WPIC Communications Capsules: Passes ‘shorted’ tracks

from the Sensor Fusion Processor Communications Capsule to

the (higher level) Weapon Platform Interface Capsule.

Request Registry Capsule: Maintains a registry of all

incoming and outgoing data streams as well as a current

copy of the track list from the (higher level) Track

Registry. This capsule is responsible for retrieving and

forwarding track data to SFPs that want to enhance their

own tracks with remote SFP’s track data (this makes the SFP

Forum concept into an 1 X N bandwidth usage structure

instead of an N X N bandwidth usage structure, which is

what happens if you have SFPs talking to one another). The

Request Registry Capsule does not automatically retrieve

and forward data requested by the various SFPs, however.

It has an internal state machine that decides whether or

not to pass it. This internal state machine is identical

to the SFP’s Collaborative Fusing Capsule’s equation, with

the exception that the RRC’s state machine has a better

view of the network and its components. The state machine’s

decision to either allow or disallow a collaborative fusion

request to be processed can be understood to be the result

of an evaluation of several key factors, all of which must

be within allowable parameters. This state machine

160

decision is most accurately understood as an AND logic

equation (network usage AND track type fusible AND better

fusible remote track available AND track moving slow enough

AND pre-determined quality threshold not met). This

capsule also receives all ‘short’ commands and ensures that

the appropriate data stream is ‘shorted’ to the WPIC

Communications Capsule with the appropriate track ID on the

data stream.

Sensor Fusion Processor Communications Capsules:

Establish communications between Sensor Fusion Processors

and the Sensor Net. Handle all data flows between the SFPs

and the Sensor Net. Passes tracks to the Request Registry

Capsule when so directed by the RRC.
L. SENSOR NET’S TRACK FILTER CAPSULE

Figure 34. Track Filter Capsule UML-RT Diagram

161

Sensor Directing Capsule: Contains the logic that

decides what to do with tracks as they come in. Tracks

that are correlated out have a ‘stop sending’ order added

to the track data, which will be put on the master track

list and distributed to the parent SFP for action.

List Maintenance Capsule: The concept of this capsule

is that it must take these vast streams of data flowing

into it and, after comparing them to the list of current

tracks, decide which of these constitute new tracks that

must be added to the list or which are better tracks than

what was previously had, and which are to be dropped. This

processing is all done in parallel without the benefit of

mutual exclusion. Therefore, in order to ensure accurate

decisions are tacked onto the tracks before they are passed

to the (higher level) Track Registry Capsule, it then

serializes all input and passes it along with its decisions

to the Sensor Directing Capsule so that the tracks can

receive appropriate markings to cause the correct actions

to be taken by the SFPs.

CC Communications Capsule: Receives cues from the

(higher level) Cueing Capsule and passes them to the List

Maintenance Capsule. Unlike all others, it receives a

valid/invalid response directly from the List Maintenance

Capsule before the LMC writes to the (higher level) Track

Registry Capsule.

PHIC Communications Capsule: Handles all traffic from

the (higher level) Peer/Higher Interface Capsule. It takes

potentially multiple feeds and serializes them to reduce

the timing complexity.

SIC Communications Capsule: Handles all traffic from

the (higher level) SFP Interface Capsule. It takes

potentially multiple feeds and serializes them.

162

TRC Communications Capsule: Forwards all tracks with

embedded commands to the (higher level) Track Registry

Capsule. It also forwards requests for the master track

list from the List Maintenance Capsule and replies with the

master track list to the List Maintenance Capsule once the

master track list is received.

M. SENSOR NET’S CUEING CAPSULE

Figure 35. Cueing Capsule UML-RT Diagram

Cue Correlation Capsule: This capsule screens all

inputs received using a list of the last several seconds of

cues. If it determines that a cue is virtually the same as

one in its resident memory, then it will drop the cue

rather than forward it. Those that pass screening are

forwarded to the TFC Communications Capsule.

163

S-CA-SN Communications Capsule: Receives cues

directly from Sensors, Competent Authorities, and other

Sensor Nets and forwards them to the Cue Correlation

Capsule.

TCC Communications Capsule: Forwards all cues to the

(higher level) Track Correlation Capsule. It then receives

a copy of each cue back with either ‘invalid’ or ‘valid’ on

it. It forwards the ‘valid’ cues to the Sensor Controlling

Authority Communications Capsule for dissemination.

Sensor Controlling Authority Communications Capsule:

responsible for establishing communications with Sensor

Controlling Authorities. It forwards all valid cues to all

Sensor Controlling Authorities affiliated with the Sensor

Net.

Note: The whole cueing system is a separate system

from the track list passing that goes on through other

channels. It is designed to be much faster to allow Sensor

Controlling Authorities the maximum decision time possible.

164

N. SENSOR NET’S TRACK REGISTRY CAPSULE

Figure 36. Track Registry Capsule UML-RT Diagram

Track Database Capsule: Maintains the Sensor Net’s

master list of all perceived valid tracks. Note: All

changes in a track’s status are maintained (“killed,”

“active,” “inactive,” etc).

TCC Communications Capsule: Handles all data streams

between the (higher level) Track Communications Capsule and

the Track Database and TSC Communications Capsules. It

passes valid, post-correlation tracks to the Track Database

Capsule for writing to the database. It passes the (higher

level) Track Correlation Capsule’s requests for a copy of

the master track list to the TSC Communications Capsule and

receives that list. It then passes the master track list

to the (higher level) Track Correlation Capsule.

165

TSC Communications Capsule: Receives the master track

list from the Track Database Capsule and distributes it to

the (higher level) Track Server Capsule as well as the TCC

Communications Capsule.

O. SENSOR NET’S TRACK SERVER CAPSULE

Figure 37. Track Server Capsule UML-RT Diagram

Shorting Capsule: Receives requests for streaming

telemetry data from the WPIC Communications Capsule. It

then matches it to a track from the most current track list

and sends a ‘short order’ to the SIC Communications

Capsule.

List Capsule: Receives the track list from the TRC

Communications Capsule and streams it out to all connected

capsules.

166

Peer Abstraction Capsule: Receives the track list

from the List Capsule and streams two copies to the PHIC

Communications Capsule. The first copy is unmodified and

is meant for the BMC2. The second copy gets abstracted

(i.e., unnecessary detail is removed) and is meant for Peer

Sensor Nets.

WPIC Communications Capsule: Receives requests for

streaming telemetry data from the Weapon Platform

Communications Capsules and passes these requests to the

Shorting Capsule, passing back an acknowledgement to the

weapon when the request has been shorted or passing back

some other status if not able to comply.

PHIC Communications Capsule: Receives data from the

Peer Abstraction Capsule and passes it via one of two ports

(depending on whether or not it is abstracted) to the

(higher level) Peer/Higher Interface Capsule.

TRC Communications Capsule: Receives the track list

from the (higher level) Track Registry Capsule and passes

it to the List Capsule.

SIC Communications Capsule: Receives the track list

from the List Capsule and Shorting Orders from the Shorting

Capsule. Forwards them to the (higher level) SFP Interface

Capsule for action.

167

P. SENSOR NET’S PEER/HIGHER INTERFACE CAPSULE

Figure 38. Peer/Higher Interface Capsule UML-RT Diagram

TSC Communications Capsule: Handles all data streams

between the BMC2 Communications Capsule or Peer Sensor Net

Communications Capsule and the (higher level) Track Server

Capsule.

TCC Communications Capsule: Receives modifications

from the BMC2 Communications Capsule as well as Low Detail

Track Lists from the Peer Sensor Net Communications Capsule

and passes it to the (higher level) Track Correlation

Capsule.

Peer Sensor Net Communications Capsules: Establish

communications between the owning Sensor Net and its peer

Sensor Nets. They then handle requests by peer sensor nets

for Track Lists of Low Detail Track Data, passing such

168

requests to the TSC Communications Capsules. They also

pass their Low Detail Track Data to the TFC Communications

Capsules for integration into the (higher level) Track

Registry Capsule, in order to provide better situational

awareness to the parent Sensor Net.

BMC2 Communications Capsule: Establishes

communications between the owning Sensor Net and its

superior BMC2. It handles requests from the BMC2 for track

data. It also passes modified track data from the BMC2 to

the TFC Communications Capsule.

Q. SENSOR NET’S WEAPONS PLATFORM INTERFACE CAPSULE

Figure 39. Weapons Platform Interface Capsule UML-RT

Diagram

169

TSC Communications Capsule: Handles all data streams

between the Weapon Platform Communications Capsule and the

(higher level) Track Server Capsule.

SIC Communications Capsules: Receive shorted tracks

from the (higher level) SFP Interface Capsule. These

tracks are passed to the appropriate Weapon Platform

Communications Capsule.

Weapon Platform Communications Capsules: Establishes

communications between the Sensor Net and Weapon Platforms.

Each instantiation of this capsule carries a priority,

which is the priority of the target the weapon platform is

assigned (obtained from the BMC2’s target list by the

weapon platform and is part of the request for a firing

solution).

170

R. WEAPONS PLATFORM

Figure 40. Weapons Platform UML-RT Diagram

Weapon Interface Capsule: Relays fire-control data to

the weapons and performs all weapon interface functions.

Command & Control (C2) Capsule: Receives Target List

from Weapon Net Interface Capsule. It then uses the Fire

Control Capsule to generate its bids, then submits the bids

through the WNIC to the Weapon Net. This capsule also

oversees the Fire Control Capsule and issues commands to

its own weapons (through the FCC).

Fire Control Capsule: Performs all normal fire

control functions, computes target bids, and requests track

data through the SNIC.

Sensor Net Interface Capsule: Requests and relays

track information for assigned targets.

171

Weapon Net Interface Capsule: Receives and replies to

Target List Bid Requests. Relays assigned tracks to C2

capsule.

S. BMC2

Figure 41. BMC2 UML-RT Diagram

Cueing Capsule: Passes abstracted track data as

cueing messages to peer Sensor Nets.

Battle Management Capsule: Validates or modifies

proposed weapons assignments from Weapons Net. Controls

and updates Master Target List. Does Predictive Tracking

for current tracks.

Sensor Net Interface Capsule: Receives Track List

from Sensor Net and pushes modifications due to C2

Overrides back to Sensor Net.

172

Weapon Net Interface Capsule: Pushes the Master

Target List to Weapon Net and receives the proposed weapons

assignments.

T. WEAPON

Figure 42. Weapon UML-RT Diagram

Control Capsule: Receives guidance and telemetry data

through WPIC from parent Weapon Platform. Controls the

weapon and provides feedback to the weapon platform.

Weapon Platform Interface Capsule: Establishes and

maintains communications with the parent Weapon Platform.

173

U. WEAPON NET

Figure 43. Weapon Net UML-RT Diagram

Control Capsule: Receives guidance and telemetry data

through WPIC from parent Weapon Platform. Controls the

weapon and provides feedback to the weapon platform.

Weapon Platform Interface Capsule: Establishes and

maintains communications with the parent Weapon Platform.

174

THIS PAGE INTENTIONALLY LEFT BLANK

175

APPENDIX F. SIMULATION CODE

A. SFP SIMULATION CODE.
Read Me File.

Notes on this Simulation:

OMNeT++ does not handle 0 modules of a type being
instantiated. Therefore, you must instantiate at least one
of both types of sensors. Because of this, it is
impossible to test the SIC to CFC link (which is only used
when there's one sensor). The simulation would have to be
retooled, and one of the two sensors would have to be
removed.
In the Plove analysis, it will always appear that ColFus
Tracks get to SensorNet faster than Normal Tracks. This is
not true. It appears this way because the radar sensors
are labeled starting with 0, whereas the numbers of the IR
Sensors follow after the radar sensors (so if there's 3
radar and 2 IR, your radar will be 0,1,2, and your IR will
be 3,4). IR has a natural delay of 500ms in it
(mathematical equation based on orbital distance, speed of
light, and a 93000Hz satellite downlink frequency). Tracks
are chosen for fusion starting with sensor 0 and going up
to the number of collaborative fusion requests - 1.
Therefore, radar sensors will always be chosen for fusion
before IR sensors, which inadvertently ensures that at
least some of the Normal Tracks will have a 500ms delay.
This kicks the average throughput time for Normal Tracks up
above those of Collaboratively Fused Tracks.
Time Constraints were gathered from the following:

Process_Time = Estimate from Professor Wen Su based on
simple routing of the message at the IP layer with no
packet analysis other than source and destination.
ListCheck = Estimate from Professor Wen Su based on basic
XORing function which XORs the most significant bits (gets
it within an ellipse of certainty) from an associative
memory bank containing a master track list of a couple of
hundred items.

Fusion = total guess as sensor fusion has yet to be
invented.
Track Size for both IR and Radar are based on a summation
of fields that would be required for a space ballistic
missile tracks. We added in additional bits for any

176

additional system overhead, etc, that may not have existed
in other data link systems such as JTIDS.
//---

// file: SFPSim.ned
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 14 Nov 2003
//---

// RadarSensor --
//
// A ground based radar sensor which sends sensor data to
the SFP.
//
simple RadarSensor
 gates:
 out: out;

endsimple

// IRSensor --
//
// A satellite based IR sensor which sends sensor data to
the SFP.
//

simple IRSensor
 gates:
 out: out;
endsimple

// SensorInterfaceCapsule --
// Serves as the primary interface to all assigned Sensors.

177

// If it is receiving data from more than one sensor, then
it sends all tracks
// to the Track Fusing Capsule. If it is only receiving
data from one sensor,

// then it passes it directly to the Collaborative Fusion
Capsule.
//
simple SensorInterfaceCapsule
 gates:
 in: in[]; // in from multiple sensors
 out: TFCout[]; // out to Track Fusing Capsule
(multiple connections)

 out: CFCout; // out to Collaborative Fusion Capsule
(only one connection)
endsimple

// SensorNetInterfaceCapsule --
//
// Responsible for pushing tracks from the Track List
Capsule to the Sensor Net.
// Receives tracks requested by the Collaborative Fusion
Capsule through Sensor
// Net from other SFPs.
//
simple SensorNetInterfaceCapsule
 gates:
 out: SNRequestout[]; //port used to request
collaboratively fused tracks from SN
 in: SNRequestin[]; //port used to receive
collaboratively fused tracks from SN
 out: CFCRequestout[]; //port used to pass
collaboratively fused tracks to CFC
 in: CFCRequestin[]; //port used to receive requests
from CFC for c. fused tracks
 in: TrackListin; //port used to receive the master
track list from SN

178

 out: TrackListout; //port used to push the master
track list to the TLC
 in: CFCin[]; //port used to receive tracks from CFC
 out: SNout[]; //port used to push tracks to SN

endsimple

// TrackFusingCapsule --
//
// Takes multiple tracks per target from the Sensor
Interface Capsule and fuses
// them into one single track per target in real time.

//
simple TrackFusingCapsule
 gates:
 in: SICin[]; //port that receives tracks from SIC
 out: CFCout[]; //port used to push tracks to CFC
 out: TLCout[]; //port used to check target list
 in: TLCin[]; //port used to receive answers from
TLC

endsimple

// CollaborativeFusionCapsule --
//
// Takes fused or raw local tracks (one per target) and
fuses them with tracks
// received from other SFPs via the SFP Interface Capsule
of the Sensor Net.
//
simple CollaborativeFusionCapsule
 gates:
 in: SICin; //port that receives tracks from SIC
 in: TFCin[]; //port that receives tracks from TFC
 out: SNICout[]; //port used to push tracks to SNIC
 out: TLCout[]; //port used to check target list

179

 in: TLCin[]; //port used to receive answers from
TLC
 out: SNICRequestout[]; //port used to request c.
fused tracks from SN

 in: SNICRequestin[]; //port used to receive c.
fused tracks from SN
endsimple

//TrackListCapsule --
//
// References its internal track list, meshes the master
track list with its own.
//
simple TrackListCapsule
 gates:
 in: TrackListin; //port that receives the master
target list from the SNIC
 in: TFCin[]; //port that receives tracks to be
checked from the TFC

 out: TFCout[]; //port used to reply to the TFC's
queries
 in: CFCin[]; //port that receives tracks to be
checked from the CFC
 out: CFCout[]; //port used to reply to the CFC's
queries
endsimple

// SensorNet --
//
// Pushes master track list to the SFP, receives tracks
from the SFP, and handles
// requests for tracks from other SFPs.
//
simple SensorNet

 gates:

180

 out: SFPRequestout[]; //port used to push
collaboratively fused tracks to the SFP
 in: SFPRequestin[]; //port used to receive c. fused
track requests from SFP

 out: TrackListout; //port used to push the master
track list to the TLC
 in: SFPin[]; //port used to receive tracks from SFP
endsimple

// SFPSim --
//

// Model of the Sensor Fusion Processor, with connections
to multiple sensors and
// one Sensor Net.
//
module SFPSim
 parameters:
 //parameters that involve only one entity
 data_rate_RadarSensorToSFP : numeric, // the data
rate between Radar Sensor and the SFP
 RadarTrackSize : numeric, // size of an unfused
radar track
 RadarTrackDelay : numeric const, // delay between
radar tracks being sent to the SFP
 data_rate_IRSensorToSFP : numeric, // the data rate
between IR Sensor and the SFP
 IRTrackDelay : numeric const, // delay between IR
tracks being sent to the SFP
 IRTrackSize : numeric, // size of an unfused IR
track

 //parameters that involve more than one entity
 num_RadarSensors : numeric, // the number of Radar
Sensors
 num_IRSensors : numeric, // the number of IR
Sensors

181

 num_Tracks : numeric, //the number of real tracks
out there (ie: planes, rockets, missiles, etc)
 data_rate_SFPtoSensorNet : numeric, // the data
rate between the SFP and SensorNet

 data_rate_Internal : numeric, // data rate of
connections within the SFP
 TrackListDelay : numeric, //amount of delay between
sendings of the master track list
 num_FusionRequests : numeric, // number of
collaborative fusion requests from CFC (<=num_Tracks)
 FusedTrackSize : numeric, // size of a firing
solution quality fused track

 Process_Time : numeric, // Generic handling time
each module eats in handling a track
 ListCheck : numeric, // Time Required to Check a
Track against the List
 Fusion : numeric; //Time Required to perform a
Fusing Action
 submodules:
 TrackFusingCapsule: TrackFusingCapsule;

 gatesizes:
 SICin[num_RadarSensors+num_IRSensors],
//port that receives tracks from SIC
 CFCout[num_Tracks], //port used to push
tracks to CFC
 TLCout[num_RadarSensors+num_IRSensors],
//port used to check target list
 TLCin[num_RadarSensors+num_IRSensors];
//port used to receive answers from TLC
 display: "p=79,59,r,70;i=comp;b=36,32";
 CollaborativeFusionCapsule:
CollaborativeFusionCapsule;
 gatesizes:
 SICin, //port that receives tracks from SIC
 TFCin[num_Tracks], //port that receives
tracks from TFC

 SNICout[num_Tracks], //port used to push
tracks to SNIC

182

 TLCout[num_Tracks], //port used to check
target list
 TLCin[num_Tracks], //port used to receive
answers from TLC

 SNICRequestout[num_FusionRequests], //port
used to request c. fused tracks from SN
 SNICRequestin[num_FusionRequests]; //port
used to receive c. fused tracks from SN
 display: "p=136,155,r,70;i=comp;b=36,32";
 TrackListCapsule: TrackListCapsule;
 gatesizes:
 TrackListin, //port that receives the
master target list from the SNIC
 TFCin[num_RadarSensors+num_IRSensors],
//port that receives tracks to be checked from the TFC
 TFCout[num_RadarSensors+num_IRSensors],
//port used to reply to the TFC's queries
 CFCin[num_Tracks], //port that receives
tracks to be checked from the CFC
 CFCout[num_Tracks]; //port used to reply to
the CFC's queries
 display: "p=69,284,r,70;i=comp;b=36,32";
 SensorNet: SensorNet;
 gatesizes:
 SFPRequestout[num_FusionRequests], //port
used to push collaboratively fused tracks to the SFP
 SFPRequestin[num_FusionRequests], //port
used to receive c. fused track requests from SFP

 TrackListout, //port used to push the
master track list to the TLC
 SFPin[num_Tracks]; //port used to receive
tracks from SFP
 display: "p=375,291;i=router3;b=36,32";
 SensorNetInterfaceCapsule:
SensorNetInterfaceCapsule;
 gatesizes:

 SNRequestout[num_FusionRequests], //port
used to request collaboratively fused tracks from SN

183

 SNRequestin[num_FusionRequests], //port
used to receive collaboratively fused tracks from SN
 CFCRequestout[num_FusionRequests], //port
used to pass collaboratively fused tracks to CFC

 CFCRequestin[num_FusionRequests], //port
used to receive requests from CFC for c. fused tracks
 TrackListin, //port used to receive the
master track list from SN
 TrackListout, //port used to push the
master track list to the TLC
 CFCin[num_Tracks], //port used to receive
tracks from CFC

 SNout[num_Tracks]; //port used to push
tracks to SN
 display: "p=224,284;i=router;b=32,32";
 IRSensor: IRSensor[num_IRSensors]; //
 display:
"p=395,69,r,90;i=satellitesensoricon;b=75,97";
 SensorInterfaceCapsule: SensorInterfaceCapsule;
 gatesizes:

 TFCout[num_RadarSensors+num_IRSensors],
 CFCout,
 in[num_RadarSensors+num_IRSensors];
 display: "p=227,60,r,80;i=router;b=32,32";
 RadarSensor: RadarSensor[num_RadarSensors];
 display:
"p=393,196,r,100;i=radarsensoricon;b=92,88";
 //see p43 of the manual for figuring out problems with
ports (especially the [] parts)
 connections:
 //connect up the Radar Sensors to the SIC
 for i=0..num_RadarSensors-1 do
 RadarSensor[i].out --> delay 5ms -->
SensorInterfaceCapsule.in[i];
 endfor;
 //connect up the IR Sensors to the SIC also

 for i=0..num_IRSensors-1 do

184

 IRSensor[i].out --> delay 500ms -->
SensorInterfaceCapsule.in[num_RadarSensors + i];
 endfor;
 //connect up the SIC to the TFC

 for i=0..(num_RadarSensors+num_IRSensors)-1 do
 SensorInterfaceCapsule.TFCout[i] --> delay 0ms
--> TrackFusingCapsule.SICin[i];
 endfor;
 //connect up the SIC to the CFC
 SensorInterfaceCapsule.CFCout --> delay 0ms -->
CollaborativeFusionCapsule.SICin;

 //connect up the TFC with the TLC
 for i=0..(num_RadarSensors+num_IRSensors)-1 do
 TrackFusingCapsule.TLCout[i] --> delay 0ms -->
TrackListCapsule.TFCin[i];
 endfor;
 for i=0..(num_RadarSensors+num_IRSensors)-1 do
 TrackFusingCapsule.TLCin[i] <-- delay 0ms <--
TrackListCapsule.TFCout[i];

 endfor;
 //connect up the TFC with the CFC
 for i=0..num_Tracks-1 do
 TrackFusingCapsule.CFCout[i] --> delay 0ms -->
CollaborativeFusionCapsule.TFCin[i];
 endfor;

 //connect up the CFC with the TLC

 for i=0..num_Tracks-1 do
 CollaborativeFusionCapsule.TLCout[i] --> delay
0ms --> TrackListCapsule.CFCin[i];
 endfor;
 for i=0..num_Tracks-1 do
 CollaborativeFusionCapsule.TLCin[i] <-- delay
0ms <-- TrackListCapsule.CFCout[i];
 endfor;

185

 //connect up the CFC with the SNIC
 for i=0..num_FusionRequests-1 do
 CollaborativeFusionCapsule.SNICRequestout[i] --
> delay 0ms --> SensorNetInterfaceCapsule.CFCRequestin[i];

 endfor;
 for i=0..num_FusionRequests-1 do
 CollaborativeFusionCapsule.SNICRequestin[i] <--
delay 0ms <-- SensorNetInterfaceCapsule.CFCRequestout[i];
 endfor;
 for i=0..num_Tracks-1 do
 CollaborativeFusionCapsule.SNICout[i] --> delay
0ms --> SensorNetInterfaceCapsule.CFCin[i];

 endfor;

//connect up the SNIC with the SensorNet and TLC to pass
the master track list through
//all delays are based on a dedicated T-1 or faster line.
 SensorNetInterfaceCapsule.TrackListin <-- delay 5ms
<-- SensorNet.TrackListout;
 SensorNetInterfaceCapsule.TrackListout --> delay
5ms --> TrackListCapsule.TrackListin;
 //connect up the SNIC with the SensorNet to request
collaboratively fused tracks
 for i=0..num_FusionRequests-1 do
 SensorNetInterfaceCapsule.SNRequestout[i] -->
delay 5ms --> SensorNet.SFPRequestin[i];
 endfor;
 for i=0..num_FusionRequests-1 do

 SensorNetInterfaceCapsule.SNRequestin[i] <--
delay 5ms <-- SensorNet.SFPRequestout[i];
 endfor;
 //connect up the SNIC with the SensorNet to pass
tracks to SensorNet
 for i=0..num_Tracks-1 do
 SensorNetInterfaceCapsule.SNout[i] --> delay
5ms --> SensorNet.SFPin[i];

 endfor;

186

 display: "p=18,18;b=273,301";
endmodule

//
// Instantiates a Sensor Fusion Processor.
//
network TheSFPSim : SFPSim // must match file name (e.g.
test.ned)
 parameters:
 num_RadarSensors = input(4, "Number
of Ground-Based Radar Sensors:_______________"),

 num_IRSensors = input(2, "Number
of Satellite-Based IR Sensors:_______________"),
 num_Tracks = input (5, "Number
of actual objects being tracked:_____________"),
 data_rate_SFPtoSensorNet = input(45000000, "Data
Rate (bps) between SFP and SensorNet:__________"),
 data_rate_Internal = input(1000000000, "Data
Rate (bps) between Capsules:___________________"),

 FusedTrackSize = input(500, "Size
(bits) of Fused Track:_________________________"),
 data_rate_RadarSensorToSFP = input(45000000,"Data
Rate (bps) between Radar Sensor and the SFP:___"),
 RadarTrackSize = input(500, "Size
(bits) of an Unfused Radar Track:______________"),
 RadarTrackDelay = input(.5, "Delay
(sec) between Radar Tracks sent to the SFP:___"),

 data_rate_IRSensorToSFP = input(93000, "Data
Rate (bps) between IR Sensor and the SFP:______"),
 IRTrackDelay = input (2, "Delay
(sec) between IR tracks being sent to the SFP:"),
 IRTrackSize = input (500, "Size
(bits) of an unfused IR track:_________________"),
 TrackListDelay = input(.1, "Delay
(sec) between Master Track List broadcasts:___"),

 num_FusionRequests = input(1, "Number
of collaborative fusion requests from CFC:___"),

187

 Process_Time = input(.000005,
 "Time (sec) each Module takes to handle a
track:_____"),
 ListCheck = input(.0005, "Time
(sec) to check a track against the List:_______"),
 Fusion = input(.01,
 "Time (sec) required to perform a Fusing
Action:_____");

endnetwork

//---

// file: RadarSensor.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 14 Nov 2003
// This is a generic radar sensor.
//---

#include "omnetpp.h"

class RadarSensor : public cSimpleModule
{
 Module_Class_Members(RadarSensor,cSimpleModule,16384)
 virtual void activity();
};
Define_Module(RadarSensor);
void RadarSensor::activity()

{
 int own_addr = gate("out")->toGate()->index();
 int track_size = parentModule()->par("RadarTrackSize");
 int num_tracks = parentModule()->par("num_Tracks");
 double delay = parentModule()->par("RadarTrackDelay");
 bool sim_start = true;
 for(;;)
 {

188

 if (!sim_start)
 {
 // keep an interval between batches of tracks
being sent out

 wait(delay);
 }
 sim_start = false;
 for(int i=0;i<num_tracks; i++) //send out one
track per object out there.
 {
 // connection setup
 ev << "Client " << name() << " " << own_addr
<< " sending Radar Track of size " << track_size << "
bits\n";
 cMessage *work = new cMessage(name());
 work->addPar("src") = own_addr;
 work->addPar("fwd") = true;
 work->setLength(track_size);
 work->setTimestamp(); //puts a current
time timestamp on it.

 send(work, "out");
 }
 }
}

//---
// file: IRSensor.cpp
// author: Joel D. Babbitt

// Thesis Work @ NPS
// Date: 14 Nov 2003
// This is a generic IR sensor.
//---

#include "omnetpp.h"

class IRSensor : public cSimpleModule

189

{
 Module_Class_Members(IRSensor,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(IRSensor);

void IRSensor::activity()
{

 int own_addr = gate("out")->toGate()->index();
 int track_size = parentModule()->par("IRTrackSize");

 int num_tracks = parentModule()->par("num_Tracks");
 double delay = parentModule()->par("IRTrackDelay");
 cOutVector resp_v("response_time");
 double response_time;
 bool sim_start = true;

 for(;;)
 {

 if (!sim_start)
 {
 // keep an interval between batches of tracks
being sent out
 wait(delay);
 }

 sim_start = false;

 for(int i=0;i<num_tracks; i++) //send out one
track per object out there.
 {
 // connection setup
 ev << "Client " << name() << " " << own_addr
<< " sending IR Track of size " << track_size << " bits\n";
 cMessage *work = new cMessage(name());

190

 work->addPar("src") = own_addr;
 work->addPar("fwd") = true;
 work->setLength(track_size);
 work->setTimestamp(); //puts a current
time timestamp on it.
 response_time = simTime();
 send(work, "out");
 }
 }
}
//---
// file: SensorInterfaceCapsule.cpp

// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 15 Nov 2003
// The SensorInterfaceCapsule connects sensors with the SFP
//---
#include "omnetpp.h"
class SensorInterfaceCapsule : public cSimpleModule
{

Module_Class_Members(SensorInterfaceCapsule,cSimpleModule,1
6384)
 virtual void activity();
};
Define_Module(SensorInterfaceCapsule);
void SensorInterfaceCapsule::activity()
{

 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");
 cOutVector resp_v("SIC utilization");
 int num_radarsensors = parentModule()-
>par("num_RadarSensors");
 int num_irsensors = parentModule()-
>par("num_IRSensors");

191

 int num_sensors = num_radarsensors+num_irsensors;

 for(;;)
 {

 // receive msg (implicit queueing!)
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 // if there is only one or less tracks in the
simulation
 if (num_sensors < 2)
 {
 // then send it to the CFC
 ev << "Forwarding msg to CFC" << '\n';
 send(msg, "CFCout");
 }

 else
 { // else there's the possibility that it's a
redundant track, so send it to the TFC
 ev << "Relaying msg to TFC" << '\n';
 send(msg, "TFCout");
 }
 }
}

//---
// file: CollaborativeFusionCapsule.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 19 Nov 2003
// The Collaborative Fusing Capsule within a Sensor Fusion
Processor

192

//---

#include "omnetpp.h"
class CollaborativeFusionCapsule : public cSimpleModule

{

Module_Class_Members(CollaborativeFusionCapsule,cSimpleModu
le,16384)
 virtual void activity();
};

Define_Module(CollaborativeFusionCapsule);

void CollaborativeFusionCapsule::activity()
{
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");
 int num_fusion_requests = parentModule()-
>par("num_FusionRequests");

 double fusion_time = parentModule()->par("Fusion");
 int fused_track_size = parentModule()-
>par("FusedTrackSize");
 cOutVector resp_v("CFC utilization");
 int num_tracks = parentModule()->par("num_Tracks");
 int num_radarsensors = (parentModule()-
>par("num_RadarSensors"));
 int num_irsensors = (parentModule()-
>par("num_IRSensors"));
 int num_sensors = num_radarsensors+num_irsensors;
 double fusion_variable =
(num_tracks/(num_sensors*num_tracks)); //watch out for
divide by 0 errors
 int dropped_tracks = 0;
 int forwarded_tracks = 0;
 int total_tracks = 0; //total tracks received

193

 for(;;)
 {
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 total_tracks++;
 int source = msg->par("src");

 if (msg->arrivedOn("SICin"))
 {
 if (source < num_fusion_requests)
 {
 msg->addPar("CFC") = true;
 }
 else
 {

 msg->addPar("CFC") = false;
 }
 send(msg, "TLCout");
 }

 else if (msg->arrivedOn("TFCin"))
 {
 if (source < num_fusion_requests)

 {
 msg->addPar("CFC") = true;
 }
 else
 {
 msg->addPar("CFC") = false;

194

 }
 send(msg, "TLCout");
 }

 else if (msg->arrivedOn("SNICRequestin"))
 {
 msg->addPar("CFC") = false;
 //Fuse it
 wait(fusion_time);
 // ensure the size is a fused track size
 msg->setLength(fused_track_size);
 //add a parameter, so it knows this was a
collaboratively fused track
 msg->addPar("ColFus");
 msg->par("ColFus") = true;
 //push it out to SensorNet
 send(msg, "SNICout");
 }

 bool CFC = msg->par("CFC");

 if (msg->arrivedOn("TLCin")&& CFC)
 {
 //add a parameter, so it knows this was not
a collaboratively fused track
 msg->addPar("ColFus");
 msg->par("ColFus") = false;

 //request better track from SensorNet

 msg->setLength(50); //THIS IS AN EMBEDDED
PARAMETER!!! (not visible to the NED file)
 send(msg, "SNICRequestout");
 }

 else if (msg->arrivedOn("TLCin")&& !CFC)
 {

195

 //add a parameter, so it knows this was not
a collaboratively fused track
 msg->addPar("ColFus");
 msg->par("ColFus") = false;

 send(msg, "SNICout");
 }
 }
}

//---
// file: SensorNet.cpp

// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 19 Nov 2003
// The Sensor Net serves and receives work from the SFP.
//---

#include "omnetpp.h"

class SensorNet : public cSimpleModule
{
 Module_Class_Members(SensorNet,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(SensorNet);

void SensorNet::activity()
{
 double tracks_received = 0.00000;
 double colfus_tracks_received = 0.00000;
 double list_delay = parentModule()-
>par("TrackListDelay");
 double sim_marker = 0.00000;

196

 int fused_track_size = parentModule()-
>par("FusedTrackSize");
 int num_tracks = parentModule()->par("num_Tracks");
 double avg_utilization = 0.00;

 double process_time = parentModule()-
>par("Process_Time");
 cOutVector resp_v("SN.SFPCommCapsule Utilization");
 double total_StSNT = 0.00000;
 double total_colfus_StSNT = 0.00000;
 double avg_SensortoSensorNetTime = 0.00000;
 double avg_colfus_SensortoSensorNetTime = 0.00000;
 double colfus_SensortoSensorNetTime = 0.00000;

 double SensortoSensorNetTime = 0.00000;
 cOutVector resp_t("Normal Tracks Average Time, Sensors
to SensorNet");
 cOutVector resp_c("ColFus Tracks Average Time, Sensors
to SensorNet");

 for(;;)
 {

 //need to send out the TrackList to all SFPs
periodically, without disrupting everything else
 if (simTime()>sim_marker)
 {
 cMessage *listmsg = new cMessage(name());
 listmsg-
>setLength(num_tracks*fused_track_size);

 listmsg->addPar("ColFus") = false;
 scheduleAt(simTime()+list_delay, listmsg);
 sim_marker = simTime()+list_delay;
 ev << "Track List prepared for Broadcast" <<
'\n';
 }

 // receive msg (implicit queueing!)

197

 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);

 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 if(msg->isSelfMessage())
 {
 ev << "Size of Track List = " << msg-
>length() << '\n';
 ev << "TRACK LIST BROADCAST" << '\n';

 send(msg, "TrackListout");
 }

 bool ColFus = msg->par("ColFus");

 if(msg->arrivedOn("SFPin")&&!ColFus)
 {
 tracks_received++;

 simtime_t temp = msg->timestamp();
 ev << "Original Timestamp on the message = "
<< temp << '\n';
 simtime_t temp2 = simTime();
 ev << "Timestamp at the SensorNet = " <<
temp2 << '\n';
 SensortoSensorNetTime = temp2 - temp;
 ev << "SensortoSensorNetTime value = " <<
SensortoSensorNetTime << '\n';
 total_StSNT = total_StSNT +
SensortoSensorNetTime;
 avg_SensortoSensorNetTime =
total_StSNT/tracks_received;
 ev << "avg_SensortoSensorNetTime value = "
<< avg_SensortoSensorNetTime << '\n';
 resp_t.record(avg_SensortoSensorNetTime);

198

 delete msg;
 }
 else if (msg->arrivedOn("SFPin")&&ColFus)
 {

 colfus_tracks_received++;
 simtime_t tempA = msg->timestamp();
 ev << "COLFUS: Original Timestamp on the
message = " << tempA << '\n';
 simtime_t tempB = simTime();
 ev << "COLFUS: Timestamp at the SensorNet =
" << tempB << '\n';
 colfus_SensortoSensorNetTime = tempB -
tempA;
 ev << "colfus_SensortoSensorNetTime value =
" << colfus_SensortoSensorNetTime << '\n';
 total_colfus_StSNT = total_colfus_StSNT +
colfus_SensortoSensorNetTime;
 avg_colfus_SensortoSensorNetTime =
total_colfus_StSNT/colfus_tracks_received;
 ev << "avg_colfus_SensortoSensorNetTime
value = " << avg_colfus_SensortoSensorNetTime << '\n';

 resp_c.record(avg_colfus_SensortoSensorNetTime);
 delete msg;
 }

 else if(msg->arrivedOn("SFPRequestin"))
 {

 msg->setLength(fused_track_size);
 //send the message
 send(msg, "SFPRequestout");
 }
 }
}
//---

// file: SensorNetInterfaceCapsule.cpp

199

// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 19 Nov 2003
// This module connects the SFP to the SensorNet.

//---

#include "omnetpp.h"

class SensorNetInterfaceCapsule : public cSimpleModule
{

Module_Class_Members(SensorNetInterfaceCapsule,cSimpleModul
e,16384)
 virtual void activity();
};

Define_Module(SensorNetInterfaceCapsule);

void SensorNetInterfaceCapsule::activity()

{
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");
 cOutVector resp_v("SNIC Utilization");

 long total_bits = 0;
 double network_util;

 cOutVector resp_n("Network utilization");

 for(;;)
 {
 // receive msg (implicit queueing!)
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message

200

 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 if (msg->arrivedOn("CFCin"))
 {
 send(msg, "SNout");
 }
 else if (msg->arrivedOn("CFCRequestin"))
 {
 send(msg, "SNRequestout");
 }

 else if (msg->arrivedOn("SNRequestin"))
 {
 send(msg, "CFCRequestout");
 }
 else if (msg->arrivedOn("TrackListin"))
 {
 send(msg, "TrackListout");
 }

 else if (msg->arrivedOn("CFCin"))
 {
 send(msg, "SNout");
 }

// if (source == server_add)
// {
// total_bits = total_bits + reply_size;

// network_util = total_bits / (simTime() *
data_rates);
// if (network_util > 1.0) network_util = 1.0;
// resp_n.record(network_util);
// }
 }

201

}
//---
// file: TrackFusingCapsule.cpp
// author: Joel D. Babbitt

// Thesis Work @ NPS
// Date: 15 Nov 2003
// The Track Fusing Capsule within a Sensor Fusion
Processor
//---

#include "omnetpp.h"

class TrackFusingCapsule : public cSimpleModule
{

Module_Class_Members(TrackFusingCapsule,cSimpleModule,16384
)
 virtual void activity();
};

Define_Module(TrackFusingCapsule);

void TrackFusingCapsule::activity()
{
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");
 double fusion_time = parentModule()->par("Fusion");

 int fused_track_size = parentModule()-
>par("FusedTrackSize");
 cOutVector resp_v("TFC utilization");
 double num_tracks = parentModule()->par("num_Tracks");
 int num_radarsensors = (parentModule()-
>par("num_RadarSensors"));
 int num_irsensors = (parentModule()-
>par("num_IRSensors"));

202

 double num_sensors = num_radarsensors+num_irsensors;
 double fusion_variable = 0.000;
 double random_num;
 int dropped_tracks = 0;

 int forwarded_tracks = 0;
 int total_tracks = 0; //total tracks received
 int own_addr = gate("CFCout")->toGate()->index();

 for(;;)
 {
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 fusion_variable = (1/num_sensors); //watch out
for divide by 0 errors

 if(total_tracks<num_tracks) //this lets the first
track through for each actual object out there.
 {
 fusion_variable = 1.000;
 }

 if (msg->arrivedOn("SICin"))

 {
 ev << "TFC --> TLC" << '\n';
 send(msg, "TLCout");
 }
 else if (msg->arrivedOn("TLCin"))
 {
 total_tracks++;

203

 random_num = uniform(.01,1); //we're going
to drop all but fusion variable % of messages.

 //let's see what the variables
are!**************
 ev << "TrackFusingCapsule, deciding if we
should fuse or correlate" <<'\n';
 ev << "Here's the Random Number --> " <<
random_num <<'\n';
 ev << "Here's the Fusion Variable --> " <<
fusion_variable << '\n';
 //If the Random Number is larger, it's
correlated (dropped)
 //Elsewise, it's fused with the correlated
tracks and forwarded

 if (random_num > fusion_variable) //need to
drop the message and wait for the next one.
 {
 ev << "@@TFC Dropping the message!@@"
<< '\n';
 delete msg;
 dropped_tracks++;
 }
 else //fuse, then forward the track to the
Collaborative Fusion Capsule
 {

 ev << "@@TFC Fusing the message!@@" <<
'\n';

 //Note, the actual fusion request is
passed to an internal capsule, clearing the
 //TFC to handle other incoming tracks.
This is modeled by subtracting fusion_time
 //from the fused message's timestamp.
This shows the time delay in the end.
 simtime_t temp = msg->timestamp();

204

 if (temp>fusion_time)
 {
 temp = temp - fusion_time;
 }

 msg->setTimestamp(temp);

 // change the size to a fused track
size
 msg->setLength(fused_track_size);

 ev << "TFC --> CFC" << '\n';
 // forward the track

 send(msg, "CFCout");
 forwarded_tracks++;
 }
 }
 else
 {
 ev << "***ERROR: TFC did not handle
message!***";

 }
 }
}
//---
// file: TrackListCapsule.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 14 Nov 2003

// The Track List Capsule keeps track of the track list
// for the SFP.
//---

#include "omnetpp.h"

class TrackListCapsule : public cSimpleModule

205

{

Module_Class_Members(TrackListCapsule,cSimpleModule,16384)
 virtual void activity();

};

Define_Module(TrackListCapsule);

void TrackListCapsule::activity()
{
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");
 double check_time = parentModule()->par("ListCheck");
 cOutVector resp_v("TLC Utilization");
 int num_tracks = parentModule()->par("num_Tracks");

 for(;;)
 {

 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 if (msg->arrivedOn("TFCin"))

 {
 ev << "TrackListCapsule processing msg from
TFCin" << '\n';

 //Put in check time for checking the list
 wait(check_time);
 avg_utilization = avg_utilization +
check_time;

206

 resp_v.record(avg_utilization/simTime());

 send(msg, "TFCout");
 }

 else if (msg->arrivedOn("CFCin"))
 {
 ev << "TrackListCapsule processing msg from
CFCin" << '\n';
 wait(check_time);

 //Put in check time for checking the list
 wait(check_time);

 avg_utilization = avg_utilization +
check_time;
 resp_v.record(avg_utilization/simTime());

 send(msg, "CFCout");
 }
 else if (msg->arrivedOn("TrackListin"))
 {

 ev << "TrackListCapsule processing msg from
TrackListin" << '\n';
 //note, this causes minimal delay, as it
goes to the inactive Track Registry
 //then, after the inactive comes on line, it
is given to the formerly active TR.

 //This is an estimated service delay to
switch between the active and semi-active TRs.
 wait(process_time);
 avg_utilization = avg_utilization +
process_time;
 resp_v.record(avg_utilization/simTime());

 delete msg;
 }

207

 }
}

B. SENSOR NET SIMULATION.

This simulation was a follow on to our SFP Simulation work.

It is complete and functional except for the BMC2

generating the firing order correctly and sending it

through the PHIC à TCC à TRC à TSC Chain and the WP à TSC

à SFPIC Chain. This can well serve as a basis for analysis

of different architectural concepts for the Sensor Net.

//---

// file: SensorNetSim.ned
// author: Joel D. Babbitt
// Thesis Work @ NPS

// Date: 25 Nov 2003
//---

// RadarSensor --
//
// A ground based radar sensor which sends cues to the
SensorNet.
//
simple RadarSensor
 gates:
 out: out;
endsimple

// IRSensor --
//

208

// A satellite based IR sensor which sends cues to the
SensorNet.
//
simple IRSensor

 gates:
 out: out;
endsimple

// Sensor Controlling Authority --
//
// The entity which issues orientation commands to the
individual sensors
//
simple SCA
 gates:
 in: in; //this is where the SCA receives the master
track list
endsimple

// Competent Authority --
//
// Any authority which can competently give cues to
SensorNet
//
simple CA
 gates:

 out: out;
endsimple

// Remote SensorNet --
//
// A peer sensornet to our sensornet.

209

//
simple RemoteSN
 gates:
 in: in; //receives the master track list
(abstracted version) from our SensorNet
 out: out; //pushes its abstracted master track list
to our SensorNet
 out: Cueout; //pushes cues to the cueing capsule of
our SensorNet
endsimple

// SensorFusionProcessor --
//
// Responsible for pushing tracks to the Sensor Net.
Requests tracks for
// Collaborative Fusion from SensorNet.
//
simple SFP
 gates:

 out: SNRequestout[]; //port used to request
collaboratively fused tracks from SN
 in: SNRequestin[]; //port used to receive
collaboratively fused tracks from SN
 in: TrackListin; //port used to receive the master
track list from SN
 out: SNout[]; //port used to push tracks to SN
endsimple

// SFP Interface Capsule --
//
// Pushes master track list to the SFP, receives tracks
from the SFP, and handles
// requests for tracks from other SFPs.
//

210

simple SFPIC
 gates:
 out: SFPRequestout[]; //port used to push
collaboratively fused tracks to the SFP

 in: SFPRequestin[]; //port used to receive c. fused
track requests from SFP
 in: TrackListin; //port used to receive the master
track list from the TSC
 out: TrackListout[]; //port used to push the master
track list to the SFPs
 in: SFPin[]; //port used to receive tracks from
SFPs, # = # of SFPs

 out: TCCout[]; //port used to push tracks to the
TCC, # = # of SFPs
 out: WPout[]; //port used to push tracks to the
WPIC
 in: Shortin; //port used to receive short orders
from the TSC
endsimple

// Track Correlation Capsule
//
//
//
simple TCC
 gates:
 in: TRCin; //receives the master track list from
the TRC
 out: TRCout[]; //pushes modifications (tracks) to
the TRC, # of ports = # of tracks
 in: SFPICin[]; //receives tracks from the SFP
Interface Capsule
 in: PHICBMC2in[]; //receives modifications to
tracks
 in: PHICPSNin[]; //receives abstracted master track
lists
 in: Cuein[]; //# = # of tracks

211

 out: Cueout[]; //# = # of tracks
endsimple

// Cueing Capsule
//
//
//
simple CC
 gates:
 in: Cuein[]; //# of ports = Sensors + Competent
Authorities + Peer SensorNets

 out: TCCout[]; //# of ports = # of tracks
 in: TCCin[]; //# of ports = # of tracks
 out: SCAout[]; //# of ports = # of SCAs
endsimple

// Track Registry Capsule
//

//
//
simple TRC
 gates:
 in: TCCin[]; //receives modifications (tracks) from
the TCC, # of ports = # of tracks
 out: TCCout; //pushes master track list to TCC
 out: TSCout; //pushes master track list to TSC

endsimple

// Track Server Capsule
//
//
//

212

simple TSC
 gates:
 in: TRCin; //receives master track list from TRC
 in: WPICin[]; //receives requests from WPICs for
tracks, # = # of WPs
 out: Shortout; //passes short commands to the SFPIC
 out: TrackListout; //passes the master track list
to the WPIC
 out: BMC2out; //passes the master track list to the
PHIC
 out: PSNout; //passes the abstracted track list to
the PHIC

endsimple

// Peer/Higher Interface Capsule
//
//
//

simple PHIC
 gates:
 in: MasterListin;
 in: AbstractListin;
 out: TCCBMC2out[]; //used to pass BMC2
modifications to the TCC
 out: TCCPSNout[]; //used to pass abstracted master
track lists from PSNs

 in: BMC2in[]; //used to receive BMC2 modifications,
of ports = # of tracks
 out: BMC2out; //used to pass the Master Track List
to the BMC2
 out: PSNout[]; //used to pass abstracted master
track lists to Peer SensorNets
 in: PSNin[]; //used to receive abstracted master
track lists from Peer SensorNets

endsimple

213

// BMC2 --
//

// The battle management (what the army/navy/marines call
command and control) element.
//
simple BMC2
 gates:
 in: in; //receives master track list from the
SensorNet
 out: out[]; //pushes its modifications back to the
SensorNet, # of ports = # of tracks
 out: WPout[]; //pushes firing orders to the Weapons
Platforms
endsimple

// Weapon Platform
//

// A weapon's controlling entity. It requests firing
solution quality tracks from the SensorNet
// so that it may fire on tasked targets.
//
simple WP
 gates:
 in: in; //receives the firing solution quality
track from the SensorNet

 out: out; //requests the firing solution quality
track from the SensorNet
 in: BMC2in; //receives firing orders from the BMC2
endsimple

// Weapon Platform Interface Capsule
//

214

//
//
simple WPIC
 gates:

 out: WPout[]; //port used to pass tracks to WPs
 in: WPin[]; //port used to receive requests from
the WPs
 out: TrackRequestout[]; //port used to request a
track (to TSC), # of ports = # of requests
 in: TrackRequestin[]; //port used to receive
requested tracks (from SFPIC)
endsimple

// SensorNetSim --
//
// Model of the SensorNet, with connections to all
interacting devices
//
module SensorNetSim

 parameters:
 //parameters that involve only one entity
 data_rate_RadarSensorToSFP : numeric, // the data
rate between Radar Sensor and the SFP
 RadarTrackSize : numeric, // size of an unfused
radar track
 data_rate_IRSensorToSFP : numeric, // the data rate
between IR Sensor and the SFP

 IRTrackSize : numeric, // size of an unfused IR
track
 data_rate_SFPtoSensorNet : numeric, // the data
rate between the SFP and SensorNet
 ClassDelay : numeric, // time required to classify
a track as either target or not
 TrackDelay : numeric, // time required to get a
track to SensorNet (from SFPSim).

215

 //parameters that involve more than one entity
 num_RadarSensors : numeric, // the number of Radar
Sensors
 num_IRSensors : numeric, // the number of IR
Sensors
 num_SFPs : numeric, // the number of SFPs in the
simulation
 num_SCAs : numeric, // the number of Sensor
Controlling Authorities
 num_CAs : numeric, // the number of Competent
Authorities
 num_PSNs : numeric, // the number of Peer
SensorNets
 num_WPs : numeric, // the number of Weapon
Platforms
 num_Tracks : numeric, // the number of actual
tracks out there (ie: planes, missiles, etc)
 num_Targets : numeric, // the number of targets out
there (ie: enemy rockets, missiles, etc)
 num_FusionRequests : numeric, // maximum number of
collaborative fusion requests per SFP
 FusedTrackSize : numeric, // size of a firing
solution quality fused track
 Process_Time : numeric, // Generic handling time
each module eats in handling a track
 ListCheck : numeric, // Time Required to Check a
Track against the List
 Fusion : numeric, //Time Required to perform a
Fusing Action

 //parameters for the SensorNet
 data_rate_Internal : numeric, // data rate of
connections within the SFP
 TrackListDelay : numeric; //amount of delay between
sendings of the master track list

 submodules:
 RadarSensor: RadarSensor[num_RadarSensors];

216

 display:
"p=361,492,r,100;i=radarsensoricon;b=92,88";
 IRSensor: IRSensor[num_IRSensors];
 display:
"p=371,373,r,90;i=satellitesensoricon;b=75,97";
 SCA: SCA[num_SCAs];
 display: "p=363,285,r,90;i=telnet;b=38,28";
 CA: CA[num_CAs];
 display: "p=51,477,r,90;i=telnet;b=38,28";
 RemoteSN: RemoteSN[num_PSNs];
 display: "p=355,225,r,90;i=router;b=32,32";
 SFP: SFP[num_SFPs];

 gatesizes:
 SNRequestout[num_Tracks], //port used to
request collaboratively fused tracks from SN
 SNRequestin[num_Tracks], //port used to
receive collaboratively fused tracks from SN
 SNout[num_Tracks]; //port used to push
tracks to SN
 display: "p=51,25,r,90;i=cogwheel;b=32,30";

 SFPIC: SFPIC;
 gatesizes:
 SFPRequestout[num_Tracks*num_SFPs], //port
used to push collaboratively fused tracks to the SFP
 SFPRequestin[num_Tracks*num_SFPs], //port
used to receive c. fused track requests from SFP
 TrackListout[num_SFPs], //port used to push
the master track list to the SFPs

 SFPin[num_SFPs*num_Tracks], //port used to
receive tracks from SFPs
 TCCout[num_SFPs*num_Tracks], //port used to
push tracks to the TCC, # = # of SFPs
 WPout[num_Targets]; //port used to push
tracks to the WPIC
 display: "p=119,195,r,70;i=comp;b=36,32";
 TCC: TCC;

 gatesizes:

217

 TRCout[num_Tracks], //pushes modifications
(tracks) to the TRC, # of ports = # of tracks
 SFPICin[num_Tracks * num_SFPs], //receives
tracks from the SFP Interface Capsule

 PHICBMC2in[num_Targets], //receives
modifications to tracks
 PHICPSNin[num_PSNs], //receives abstracted
master track lists
 Cuein[num_Tracks], //# = # of tracks
 Cueout[num_Tracks]; //# = # of tracks
 display: "p=79,311,r,70;i=comp;b=36,32";
 CC: CC;

 gatesizes:
 Cuein[num_RadarSensors + num_IRSensors +
num_CAs + num_PSNs],
 TCCout[num_Tracks], //# of ports = # of
tracks
 TCCin[num_Tracks], //# of ports = # of
tracks
 SCAout[num_SCAs]; //# of ports = # of SCAs

 display: "p=227,407,r,70;i=comp;b=36,32";
 TRC: TRC;
 gatesizes:
 TCCin[num_Tracks]; //receives modifications
(tracks) from the TCC, # of ports = # of tracks
 display: "p=163,259,r,70;i=comp;b=36,32";
 TSC: TSC;
 gatesizes:

 WPICin[num_Targets]; //receives requests
from WPICs for tracks, # = # of Targets
 display: "p=247,259,r,70;i=comp;b=36,32";
 PHIC: PHIC;
 gatesizes:
 TCCBMC2out[num_Targets], //used to pass
BMC2 modifications to the TCC
 TCCPSNout[num_PSNs], //used to pass
abstracted master track lists from PSNs

218

 BMC2in[num_Targets], //used to receive BMC2
modifications, # of ports = # of tracks
 PSNout[num_PSNs], //used to pass abstracted
master track lists to Peer SensorNets

 PSNin[num_PSNs]; //used to receive
abstracted master track lists from Peer SensorNets
 display: "p=235,347,r,70;i=comp;b=36,32";
 BMC2: BMC2;
 gatesizes:
 out[num_Targets], //pushes its
modifications back to the SensorNet, # of ports = # of
targets

 WPout[num_WPs]; //pushes firing orders to
WPs
 display: "p=331,173,r,90;i=telnet;b=38,28";
 WP: WP[num_WPs];
 display:
"p=219,97,r,90;i=weaponplatformicon;b=39,73";
 WPIC: WPIC;
 gatesizes:

 WPout[num_WPs], //port used to pass tracks
to WPs
 WPin[num_WPs], //port used to receive
requests from the WPs
 TrackRequestout[num_Targets], //port used
to request a track (to TSC), # of ports = # of requests
 TrackRequestin[num_Targets]; //port used to
receive requested tracks (from SFPIC)

 display: "p=255,183,r,70;i=comp;b=36,32";
 //see p43 of the manual for figuring out problems with
ports (especially the [] parts)
 connections:

 //connect up the RadarSensors to the CC
 for i=0..num_RadarSensors-1 do
 RadarSensor[i].out --> delay 5ms -->
CC.Cuein[i];
 endfor;

219

 //connect up the IR Sensors to the CC also
 for i=0..num_IRSensors-1 do
 IRSensor[i].out --> delay 500ms -->
CC.Cuein[num_RadarSensors + i];
 endfor;

 //connect up the SCAs to the CC
 for i=0..num_SCAs-1 do
 SCA[i].in <-- delay 5ms <-- CC.SCAout[i];
 endfor;

 //connect up the CAs to the CC
 for i=0..num_CAs-1 do
 CA[i].out --> delay 5ms -->
CC.Cuein[num_RadarSensors + num_IRSensors + i];
 endfor;

 //connect up the Remote SensorNets
 for i=0..num_PSNs-1 do

 RemoteSN[i].in <-- delay 50ms <--
PHIC.PSNout[i];
 endfor;
 for i=0..num_PSNs-1 do
 RemoteSN[i].out --> delay 50ms -->
PHIC.PSNin[i];
 endfor;

 for i=0..num_PSNs-1 do
 RemoteSN[i].Cueout --> delay 50ms -->
CC.Cuein[num_RadarSensors + num_IRSensors + num_CAs + i];
 endfor;

 //connect up the BMC2
 BMC2.in <-- delay 5ms <-- PHIC.BMC2out;
 for i=0..num_Targets-1 do

220

 BMC2.out[i] --> delay 5ms --> PHIC.BMC2in[i];
 endfor;
 for i=0..num_WPs-1 do
 BMC2.WPout[i] --> delay 5ms --> WP[i].BMC2in;

 endfor;

 //connect up the Weapons Platforms
 for i=0..num_WPs-1 do
 WP[i].out --> delay 5ms --> WPIC.WPin[i];
 endfor;
 for i=0..num_WPs-1 do
 WP[i].in <-- delay 5ms <-- WPIC.WPout[i];

 endfor;

 //connect up the SFPs
 for i=0..num_SFPs-1, j=0..num_Tracks-1 do
 SFP[i].SNRequestout[j] --> delay 5ms -->
SFPIC.SFPRequestin[(i*num_Tracks)+j];
 endfor;
 for i=0..num_SFPs-1, j=0..num_Tracks-1 do

 SFP[i].SNRequestin[j] <-- delay 5ms <--
SFPIC.SFPRequestout[(i*num_Tracks)+j];
 endfor;
 for i=0..num_SFPs-1 do
 SFP[i].TrackListin <-- delay 5ms <--
SFPIC.TrackListout[i];
 endfor;
 for i=0..num_SFPs-1, j=0..num_Tracks-1 do

 SFP[i].SNout[j] --> delay 5ms -->
SFPIC.SFPin[(i*num_Tracks)+j];
 endfor;

 //connect up the SFPIC
 SFPIC.TrackListin <-- delay 0ms <--
TSC.TrackListout;
 SFPIC.Shortin <-- delay 0ms <-- TSC.Shortout;

221

 for i=0..(num_SFPs*num_Tracks)-1 do
 SFPIC.TCCout[i] --> delay 0ms -->
TCC.SFPICin[i];
 endfor;

 for i=0..num_Targets-1 do
 SFPIC.WPout[i] --> delay 0ms -->
WPIC.TrackRequestin[i];
 endfor;

 //connect up the WPIC
 for i=0..num_Targets-1 do
 WPIC.TrackRequestout[i] --> delay 0ms -->
TSC.WPICin[i];
 endfor;

 //connect up the PHIC
 PHIC.MasterListin <-- delay 0ms <-- TSC.BMC2out;
 PHIC.AbstractListin <-- delay 0ms <-- TSC.PSNout;
 for i=0..num_Targets-1 do
 PHIC.TCCBMC2out[i] --> delay 0ms -->
TCC.PHICBMC2in[i];
 endfor;
 for i=0..num_PSNs-1 do
 PHIC.TCCPSNout[i] --> delay 0ms -->
TCC.PHICPSNin[i];
 endfor;

 //connect up the CC

 for i=0..num_Tracks-1 do
 CC.TCCout[i] --> delay 0ms --> TCC.Cuein[i];
 endfor;
 for i=0..num_Tracks-1 do
 CC.TCCin[i] <-- delay 0ms <-- TCC.Cueout[i];
 endfor;

 //connect up the TCC

222

 TCC.TRCin <-- delay 0ms <-- TRC.TCCout;
 for i=0..num_Tracks-1 do
 TCC.TRCout[i] --> delay 0ms --> TRC.TCCin[i];
 endfor;

 //connect up the TRC
 TRC.TSCout --> delay 0ms --> TSC.TRCin;

 display: "p=34,162;b=249,277";
endmodule

//
// Instantiates a SensorNet
//
network TheSensorNetSim : SensorNetSim // must match file
name (e.g. test.ned)
 parameters:
 data_rate_RadarSensorToSFP = input(1440000, "Data
rate (bps) between Radar Sensors and the SFP:_____"),

 RadarTrackSize = input(1024, "Size
(bits) of an unfused radar track:_________________"),
 data_rate_IRSensorToSFP = input(93000, "Data
rate (bps) between IR Sensor and the SFP:_________"),
 IRTrackSize = input(256, "Size
(bits) of an unfused IR track:____________________"),
 data_rate_SFPtoSensorNet = input(45000000, "The
data rate (bps) between the SFP and SensorNet:_____"),

 ClassDelay = input(.005,
"Classification Delay (sec) to decide target/not
target:_____"),
 TrackDelay = input(.2,
 "SFP Time Delay (sec) for Sensor to
SensorNet:__________"),
 num_RadarSensors = input(1, "Number
of Ground-Based Radar Sensors:________________"),

223

 num_IRSensors = input(1,
 "Number of Satellite-Based IR
Sensors:________________"),
 num_SFPs = input(1, "Number
of SFPs in the simulation:______________________"),
 num_SCAs = input(1, "Number
of Sensor Controlling Authorities:______________"),
 num_CAs = input(1, "Number
of Competent Authorities:_____________________"),
 num_PSNs = input(1, "Number
of Peer SensorNets:_________________________"),
 num_WPs = input(1, "Number
of Weapon Platforms:________________________"),
 num_Tracks = input(2, "Number
of actual Tracks (ie: planes, missiles, etc):______"),
 num_Targets = input(2, "Number
of actual Targets (ie: enemy rockets, missiles):___"),
 num_FusionRequests = input(1,
"Maximum number of ColFus requests per SFP:_____________"),
 FusedTrackSize = input(1152, "Size
of a firing solution quality fused track:___________"),
 Process_Time = input(.000005, "Time
(sec) each Module takes to handle a track/target:_"),
 ListCheck = input(.0005, "Time
(sec) to check a track against the List:__________"),
 Fusion = input(.01,
 "Time (sec) required to perform a Fusing
Action:________"),

 data_rate_Internal = input(1000000000, "Data
Rate (bps) between Capsules:____________________"),
 TrackListDelay = input(.1, "Delay
(sec) between Master Track List broadcasts:______");
endnetwork
//---

// file: BMC2.cpp

// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 29 Nov 2003

224

// The BMC2 controls which tracks are targets and which are
not
//---

#include "omnetpp.h"

class BMC2 : public cSimpleModule
{
 Module_Class_Members(BMC2,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(BMC2);

void BMC2::activity()
{
 int num_tracks = parentModule()->par("num_Tracks");
 int num_targets = parentModule()->par("num_Targets");
 int num_radarsensors = parentModule()-
>par("num_RadarSensors");
 int num_irsensors = parentModule()-
>par("num_IRSensors");
 int num_sensors = num_radarsensors+num_irsensors;
 int num_wps = parentModule()->par("num_WPs");
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");

 double classification_delay = parentModule()-
>par("ClassDelay");
 cOutVector resp_v("BMC2 utilization");

 int target_list[100];

 for (int t=0; t<100;t++)
 {

225

 target_list[t] = -1;
 }

 for(;;)

 {
 // receive msg (implicit queueing!)
 cMessage *msg = receive();
 // Make sure you put in some delay for
handling of the message
 wait(process_time);
 avg_utilization = avg_utilization +
process_time;

 resp_v.record(avg_utilization/simTime());

 if(msg->hasPar("tlp"))
 {

 int *target = (int *) msg-
>getObject("TargetList");
 //This gives us the target array that
we will now break down.
 for (int i=0; i<num_targets; i++)
 {
 if (target_list[i] == -1)
 {
 //Since all this is done at
the beginning of the simulation, it's
 //impossible to model it
offline by decrementing a timestamp, since that
 //would put it in the
negatives (an invalid value).
 //For purposes of this
simulation, we're classifying in a sequential fashion.
 wait(classification_delay);
//here's the waiting time to classify.
 int tk = uniform(0,num_wps);
//here we decide which weapon platform should get it.

226

 target_list[i] = tk;
 ev << "Target " << i << "
assigned to WP " << target_list[i] << '\n';
 cMessage *fire_order = new
cMessage(name());
 //here's the weapon platform
that was assigned to the target
 fire_order->addPar("BMC2_wp")
= target_list[i];
 //here's the target the
weapon platform is assigned to
 fire_order->addPar("target")
= i; //tracks & targets are counted 0 to n-1.
 cMessage *copy = (cMessage *)
fire_order->dup();
 send(copy, "out"); //we're
sending a copy to the Target List
 send(fire_order, "WPout",
target_list[i]); //simultaneously we send the fire order to
the WP.

 }
 else
 {
 ev << "Target " << i << "
already assigned to WP " << target_list[i] << '\n';
 }
 }
 }

 else
 {
 ev << "ERROR: BMC2 received a target
list message with no list attached!!!" << '\n';
 }

 }
}

//---

227

// file: CA.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 3 Dec 2003

// This simulates the abstract concept that others can pass
// cues to the SensorNet (not just sensors and peerSNs).
//---

#include "omnetpp.h"

class CA : public cSimpleModule

{
 Module_Class_Members(CA,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(CA);

void CA::activity()

{
 int own_addr = gate("out")->toGate()->index();
 int track_size = parentModule()->par("IRTrackSize");
 int num_tracks = parentModule()->par("num_Tracks");

 for(int i=0;i<num_tracks;i++)
 {
 // connection setup

 ev << "Client " << name() << " " << own_addr << "
sending Cue of size " << track_size << " bits\n";
 cMessage *work = new cMessage(name());
 work->setLength(track_size);
 work->addPar("src") = own_addr;
 work->addPar("track") = i;

228

 work->setTimestamp(); //puts a current time
timestamp on it.
 send(work, "out");

 ev << "In CA Module at point 1" << '\n';
 //***************************************

 }
}
//---

// file: CC.cpp

// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 29 Nov 2003
// The Cueing Capsule within a SensorNet
//---

#include "omnetpp.h"

class CC : public cSimpleModule
{
 Module_Class_Members(CC,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(CC);

void CC::activity()
{
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");
 cOutVector resp_v("CFC utilization");

229

 double num_tracks = parentModule()->par("num_Tracks");
 double num_radarsensors = (parentModule()-
>par("num_RadarSensors"));
 double num_irsensors = (parentModule()-
>par("num_IRSensors"));
 double num_sensors = num_radarsensors+num_irsensors;
 double num_cas = parentModule()->par("num_CAs");
 double num_psns = parentModule()->par("num_PSNs");
 double cue_variable =
(num_tracks/((num_sensors+num_cas+num_psns)*num_tracks));
//watch out for divide by 0 errors
 int num_scas = parentModule()->par("num_SCAs");

 ev << "In CC Module at point 1" << '\n';
 //***************************************

 //The cued array will be used to see if we keep or
drop a cue. Note, only cues relevant to our tracks
 //are being received. No irrelevant cues are being
sent by peer SensorNets.

 bool cued[100];
 for (int t=0; t<100;t++)
 {
 cued[t] = false;
 }

 for(;;)
 {

 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 int track = msg->par("track");

230

 int source = msg->par("src");

 if (msg->arrivedOn("Cuein"))
 {

 if(cued[track] == false)
 {
 ev << "CC: Cue received for track " <<
track << " from " << source << '\n';
 ev << "Reminder: sources are numbered 0
to num_RadarSensors + num_IRSensors+ num_CAs + num_PSNs"
 << '\n';

 double random_num = uniform(.01,1);
//we're going to drop all but fusion variable % of Cues.

 //let's see what the variables
are!**************
 ev << "CueingCapsule, seeing if the cue
is redundant" <<'\n';

 ev << "Here's the Random Number --> "
<< random_num <<'\n';
 ev << "Here's the Cue Variable --> " <<
cue_variable << '\n';
 //If the Random Number is larger, it's
forwarded to the TCC
 //Elsewise, it's considered a definate
valid cue and handled as such

 if (random_num > cue_variable) //need
to forward the track to the TCC for a decision
 {
 ev << "Forwarding the cue to the
TCC for a decision" << '\n';
 send(msg, "TCCout");
 }

 else

231

 {
 ev << "TRACK ALERT: Valid cue
received on Track " << track << '\n';
 cued[track] = true;

 for(int s=0; s<num_scas-1; s++)
 {
 cMessage *copy = (cMessage *)
msg->dup();
 send(copy, "SCAout", s);
 }
 send(msg, "SCAout", num_scas-1);
 }

 }
 else
 {
 ev << "CC: Redundant Cue for Target "
<< track << " dropped" << '\n';
 delete msg;
 }
 }

 else if (msg->arrivedOn("TCCin"))
 {
 //if it comes back from the TCC, then it is
a valid cue. Elsewise it would have been dropped.
 ev << "TRACK ALERT: Valid cue received for
Track " << track << '\n';
 cued[track] = true;
 for(int s=0; s<num_scas-1; s++)

 {
 cMessage *copy = (cMessage *) msg-
>dup();
 send(copy, "SCAout", s);
 }
 send(msg, "SCAout", num_scas-1);
 }
 }

232

}
//---

// file: IRSensor.cpp

// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 22 Nov 2003
// This is a generic IR sensor.
//---

#include "omnetpp.h"

class IRSensor : public cSimpleModule
{
 Module_Class_Members(IRSensor,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(IRSensor);

void IRSensor::activity()
{
 int own_addr = gate("out")->toGate()->index();
 int track_size = parentModule()->par("IRTrackSize");
 int num_tracks = parentModule()->par("num_Tracks");

 for(int i=0;i<num_tracks;i++)

 {
 // connection setup
 ev << "Client " << name() << " " << own_addr << "
sending IR Cue of size " << track_size << " bits\n";
 cMessage *work = new cMessage(name());
 work->setLength(track_size);
 work->addPar("src") = own_addr;

233

 work->addPar("track") = i;
 work->setTimestamp(); //puts a current time
timestamp on it.
 send(work, "out");

 }
}

//---

// file: PHIC.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS

// Date: 3 Dec 2003
// The Peer/Higher Interface Capsule within the SensorNet
//---

#include "omnetpp.h"

class PHIC : public cSimpleModule

{
 Module_Class_Members(PHIC,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(PHIC);

void PHIC::activity()

{
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");
 int num_psns = parentModule()->par("num_PSNs");
 cOutVector resp_v("PHIC utilization");

234

 ev << "In PHIC Module at point 1" << '\n';
 //***************************************

 for(;;)

 {
// if (simTime()==0)
/// {
// ev << "PHIC at the beginning of simulation"
<< '\n';
// cMessage *work = new cMessage(name());
// send(work, "BMC2out");
// }

 ev << "In PHIC Module before receive()" << '\n';
 //***************************************

 cMessage *msg = receive();

 ev << "In PHIC Module after receive()" << '\n';

 //***************************************

 // Make sure you put in some delay for handling
of the message
 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 if (msg->arrivedOn("MasterListin"))
 {
 ev << "PHIC sending Master Track List to
BMC2" << '\n';
 send(msg, "BMC2out");
 }

235

 else if (msg->arrivedOn("AbstractListin"))
 {
 ev << "PHIC sending Abstracted Track List to
PSNs" << '\n';

 for(int s=0; s<num_psns-1; s++)
 {
 cMessage *copy = (cMessage *) msg-
>dup();
 send(copy, "PSNout", s);
 }
 delete msg;
// send(msg, "PSNout", num_psns);

 }
 else if (msg->arrivedOn("PSNin"))
 {
 //Pass abstracted track lists to the TCC for
inclusion into the master track list.
 //These are not passed for cueing
purposes!!!
 ev << "PHIC sending Abstracted Track List to
TCC" << '\n';
 send(msg, "TCCPSNout");
 }
 else if (msg->arrivedOn("BMC2in"))
 {
 ev << "PHIC sending Master Track List to
TCC" << '\n';
 send(msg, "TCCBMC2out");

 }
 else
 {
 ev << "PHIC inactive" << '\n';
 }
 }
}

236

//---

// file: RadarSensor.cpp
// author: Joel D. Babbitt

// Thesis Work @ NPS
// Date: 22 Nov 2003
// This is a generic radar sensor.
//---

#include "omnetpp.h"

class RadarSensor : public cSimpleModule
{
 Module_Class_Members(RadarSensor,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(RadarSensor);

void RadarSensor::activity()
{
 int own_addr = gate("out")->toGate()->index();
 int track_size = parentModule()->par("RadarTrackSize");
 int num_tracks = parentModule()->par("num_Tracks");

 for(int i=0;i<num_tracks;i++)
 {

 // connection setup
 ev << "Client " << name() << " " << own_addr << "
sending Radar Cue of size " << track_size << " bits\n";
 cMessage *work = new cMessage(name());
 work->setLength(track_size);
 work->addPar("src") = own_addr;
 work->addPar("track") = i;

237

 work->setTimestamp(); //puts a current time
timestamp on it.
 send(work, "out");
 }

}

//---

// file: RemoteSN.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 3 Dec 2003

// A peer SensorNet to our SensorNet.
//---

#include "omnetpp.h"

class RemoteSN : public cSimpleModule
{

 Module_Class_Members(RemoteSN,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(RemoteSN);

void RemoteSN::activity()
{

 ev << "In RemoteSN Module at point 1" << '\n';
 //***************************************

 int own_addr = gate("out")->toGate()->index();
 int track_size = parentModule()->par("IRTrackSize");
 int num_tracks = parentModule()->par("num_Tracks");
 double avg_utilization = 0.0;

238

 double process_time = parentModule()-
>par("Process_Time");
 double classification_delay = parentModule()-
>par("ClassDelay");

 cOutVector resp_v("BMC2 utilization");

 for(int i=0;i<num_tracks;i++)
 {
 double random_num = uniform(.01,1); //we're only
going to generate 50% of Cues.
 if (random_num > .5) //The cue we were going to
send to our peer sensor net does not
 //apply to them, so we need to
wait until we have one that does apply.
 {
 ev << "##TCC Dropping the Cue!##" << '\n';
 }
 else //validate the cue as being relevant to our
SensorNet

 {
 // connection setup
 ev << "Client " << name() << " " << own_addr
 << " sending Peer SensorNet Cue of size
" << track_size << " bits\n";
 cMessage *work = new cMessage(name());
 work->setLength(track_size);
 work->addPar("src") = own_addr;

 work->addPar("track") = i;
 work->setTimestamp(); //puts a current
time timestamp on it.
 send(work, "Cueout");
 }
 }

 for(;;)

239

 {
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message

 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 //send the track list out that we just received,
as though it was ours.
 send(msg, "out");
 }

}

//---

// file: SCA.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 3 Dec 2003

// This is a generic Sensor Controlling Authority.
//---

#include "omnetpp.h"

class SCA : public cSimpleModule
{

 Module_Class_Members(SCA,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(SCA);

void SCA::activity()

240

{
 double process_time = parentModule()-
>par("Process_Time");

 for(;;)
 {
 // receive msg (implicit queueing!)
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);

 //here we'll measure how long it took to get the
cueing message here.

 //**

 }
}

//---

// file: SFP.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 25 Nov 2003
// A generic Sensor Fusion Processor.

//---

#include "omnetpp.h"

class SFP : public cSimpleModule
{
 Module_Class_Members(SFP,cSimpleModule,16384)

241

 virtual void activity();
};

Define_Module(SFP);

void SFP::activity()
{
 int own_addr = gate("SNout")->toGate()->index();
 int track_size = 0;
 int num_radar_sensors = parentModule()-
>par("num_RadarSensors");
 int radar_track_size = parentModule()-
>par("RadarTrackSize");
 int ir_track_size = parentModule()->par("IRTrackSize");
 int num_tracks = parentModule()->par("num_Tracks");
 double delay = parentModule()->par("TrackDelay");
 double time_marker = 0.00000;
 int num_fr = parentModule()->par("num_FusionRequests");
 int fusion_marker = 0;
// double avg_utilization = 0.0;

 double process_time = parentModule()-
>par("Process_Time");
// cOutVector resp_v("SFP Utilization");
 long pointer;
 cArray *pntr;
// cArray tracks;

 int track_list[100];

// for (int t=0; t<100;t++)
// {
// track_list[t] = -1;
// }

 for(;;)

242

 {

 //here's the message for each target that needs to be
sent to the SensorNet

 ev << "SFP simTime() = " << simTime() << '\n';
 ev << "SFP time_marker = " << time_marker <<'\n';

 if(simTime()>=time_marker)
 {
 time_marker = simTime()+delay;
 fusion_marker = 0;

 ev << "SFP simTime() = " << simTime() << '\n';
 ev << "SFP time_marker = " << time_marker <<'\n';

 for(int i=0;i<num_tracks;i++)
 {

 ev << "In SFP Module inside Track
Sending Loop" << '\n';

 if (true)//((track_list[i] == own_addr)
|| (track_list[i] == -1))
 {
 ev << "SFP Checking to see if it
should send out any tracks" << endl;
 if(i<=(num_radar_sensors-1))

 {
 track_size =
radar_track_size;
 }
 else
 {
 track_size = ir_track_size;
 }

243

// ev << "num_radar_sensors-1 =
" << num_radar_sensors-1 << '\n';
// ev << "i = " << i << '\n';
// ev << "if i is smaller, then
tracksize should be equal to radar_track_size" << '\n';
// ev << "track_size = " <<
track_size << '\n';

 ev << name() << " " << own_addr <<
" sending track of size " << track_size
 << " bits\n";
 cMessage *work = new cMessage(
name());
 work->addPar("src") = own_addr;
 work->addPar("track") = i;
//tracks & targets are counted 0 to n-1.
 work->setLength(track_size);
 work->setTimestamp(); //puts a
current time timestamp on it.
 send(work, "SNout");

 }
 else if(fusion_marker<num_fr)
 {
 ev << name() << " " << own_addr <<
" sending ColFus Request of size "
 << track_size << " bits\n";
 cMessage *request = new cMessage(
name());

 request->addPar("src") = own_addr;
 request->addPar("track") = i;
//tracks & targets are counted 0 to n-1.
 request->addPar("fwd") = true;
 request->setLength(50); //EMBEDDED
PARAMETER ***ColFus Request Size***
 request->setTimestamp();
 send(request, "SNRequestout");

 }

244

 fusion_marker++;
 }
 }
 else

 {
 wait(.001);
 ev << "SFP on standby" << endl;
 }

 //here's the message receiving/handling area.
 // receive msg (implicit queueing!)
 simtime_t timeout = delay;

 cMessage *msg = receive(timeout);
 ev << "SFP waiting to receive message" << endl;
 // Make sure you put in some delay for handling
of the message
 wait(process_time);

 if (msg != NULL)
 {

 if (msg->arrivedOn("SNRequestin"))
 {
 delete msg;
 }
 else if (msg->arrivedOn("TrackListin"))
 {
 pointer = msg->par("mtlp");
 ev << " Pointer in SFP Process is " <<
pointer << endl;
 pntr = (cArray *) pointer;
 cArray tracks = *pntr;
 for (int i=0; i < tracks.items(); i++)
 {
 track_list[i] = (int) tracks[i];

245

 ev << "Track List Entry " << i <<
" was assigned " << track_list[i] << endl;
 //This gives us the track_list
array for use above.

 }
 }
 }

 }
}

//---

// file: SFPIC.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 1 Dec 2003
// A SFP Interface Capsule within the SensorNet.
//---

#include "omnetpp.h"

class SFPIC : public cSimpleModule
{
 Module_Class_Members(SFPIC,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(SFPIC);

void SFPIC::activity()
{
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");

246

 cOutVector resp_v("SFPIC Utilization");
 int num_sfps = parentModule()->par("num_SFPs");
 int fused_track_size = parentModule()-
>par("FusedTrackSize");

 ev << "In SFPIC Module at point 1" << '\n';
 //***************************************

 int local_target_list[100];
 for (int t=0; t<100;t++)
 {
 local_target_list[t] = -1;

 }
 int request_registry[100];
 for (int r=0; r<100;r++)
 {
 request_registry[r] = -1;
 }

// pntr = &trackids;

// pointer = (long) pntr;

 for(;;)
 {

 //Up here we need to send tracks to the Weapons
Platforms!!

 //**

 // receive msg (implicit queueing!)

247

 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);

 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 if (msg->arrivedOn("TrackListin"))
 {
 if (msg->hasPar("mtlp"))
 {
 for(int s=0; s<num_sfps-1; s++)

 {
 cMessage *copy = (cMessage *) msg-
>dup();
 send(copy, "TrackListout", s);
 ev << "SFPIC sending Master Track
List to SFP " << s << '\n';
 }
 delete msg;

 }
 if (msg->hasPar("tlp"))
 {
 //read the target list into the local
target list.
 }

 }
 else if (msg->arrivedOn("Shortin"))
 {
 //there's a bit more delay in doing this
operation than normal
 wait(process_time);

248

 avg_utilization = avg_utilization +
process_time;
 resp_v.record(avg_utilization/simTime());

 int target = msg->par("target"); //this is
the target the shorting order is for.
 if(local_target_list[target] != -1)
 {
 bool active = msg->par("active");
//this allows a weapon platform to activate/inactivate a
short order.
 if(active)

 {
 ev << "SFPIC Marking Target " <<
target << " for Shorting!" << '\n';
 request_registry[target] = true;
 }
 else //elsewise it must have already
fired on the target.
 {

 ev << "SFPIC Deactivating Target "
<< target << '\n';
 }
 }
 else
 {
 ev << "SFPIC Cannot Short Target " <<
target << "!!!" <<'\n';

 }
 }
 else if (msg->arrivedOn("SFPin"))
 {
 int source = msg->par("src");
 int track = msg->par("track");
 if (request_registry[track] &&
(local_target_list[track] == source))

249

 //request registry having value of true
for a track means it is active.
 {
 cMessage *copy = (cMessage *) msg-
>dup();
 send(copy, "WPout");
 send(msg, "TCCout");
 }
 else //there's no active request for it at
this point
 {
 send(msg, "TCCout");

 }
 }
 else if (msg->arrivedOn("SFPRequestin"))
 {
 //if I'm smart enough I might be able to
figure out how to model the whole forum thing****

 //**

 ev << "SFPIC got a ColFus Request" << endl;
 //who did it come from?
 int id = msg->par("src");

 msg->setLength(fused_track_size); //set the
length of the fused track

 send(msg, "SFPRequestout", id); //send the
fused track back to the requesting SFP
 }
 }
}

//---

// file: TCC.cpp

250

// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 1 Dec 2003
// The Track Correlation Capsule within the SensorNet

//---

#include "omnetpp.h"

class TCC : public cSimpleModule
{
 Module_Class_Members(TCC,cSimpleModule,16384)

 virtual void activity();
};

Define_Module(TCC);

void TCC::activity()
{
 double avg_utilization = 0.0;

 double process_time = parentModule()-
>par("Process_Time");
 double fusion_time = parentModule()->par("Fusion");
 double list_time = parentModule()->par("ListCheck");
 int fused_track_size = parentModule()-
>par("FusedTrackSize");
 cOutVector resp_v("TCC utilization");
 double num_tracks = parentModule()->par("num_Tracks");

 double num_targets = parentModule()-
>par("num_Targets");
 int num_radarsensors = parentModule()-
>par("num_RadarSensors");
 int num_irsensors = parentModule()-
>par("num_IRSensors");
 double num_sensors = num_radarsensors+num_irsensors;
 int num_sfps = parentModule()->par("num_SFPs");

251

 double cue_variable = 0.000;
 double random_num;
 int dropped_tracks = 0;
 int dropped_cues = 0;

 int forwarded_tracks = 0;
 int forwarded_cues = 0;
 int total_tracks = 0; //total tracks received
 int total_cues = 0;

 ev << "In TCC Module at point 1" << '\n';
 //***************************************

 int track_list[100];
 for (int t=0; t<100;t++)
 {
 track_list[t] = -1;
 }
 for (t=0; t<num_tracks; t++)
 {

 //in an effort to simplify the simulation, here
we'll designate the winning SFPs up front
 track_list[t] = uniform(0,num_sfps);
 ev << "The SFP for Track " << t << " is SFP " <<
track_list[t] << '\n';
 }

 for(;;)

 {
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

252

 cue_variable = (1/num_sensors); //watch out for
divide by 0 errors

 if(total_cues<num_tracks) //this lets the first
track through for each actual object out there.
 {
 cue_variable = 1.000;
 }

 if (msg->arrivedOn("Cuein"))
 {

 random_num = uniform(.01,1); //we're going
to drop all but fusion variable % of Cues.

 //let's see what the variables
are!**************
 ev << "TrackCorrelationCapsule, seeing if
the cue is redundant" <<'\n';
 ev << "Here's the Random Number --> " <<
random_num <<'\n';
 ev << "Here's the Cue Variable --> " <<
cue_variable << '\n';
 //If the Random Number is larger, it's
correlated (dropped)
 //Elsewise, it's considered a valid cue and
returned as such

 if (random_num > cue_variable) //need to
drop the message and wait for the next one.
 {
 ev << "##TCC Dropping the Cue!##" <<
'\n';
 delete msg;
// dropped_cues++;
 }

 else //validate the cue

253

 {

 ev << "##TCC Validated the Cue!##" <<
'\n';

 //Note, the actual cue correlation
request is passed to an internal capsule, clearing the
 //TCC to handle other incoming cues.
This is modeled by subtracting fusion_time
 //from the fused message's timestamp.
This shows the time delay in the end.
 simtime_t temp = msg->timestamp();

 if (temp>list_time)
 {
 temp = temp - list_time;
 }
 msg->setTimestamp(temp);

 ev << "TCC.Cueout --> CC.in" << '\n';
 // return the track to the Cue Capsule;

 send(msg, "Cueout");
// forwarded_cues++;
 }
 }
 else if (msg->arrivedOn("SFPICin"))
 {
// total_tracks++;
 //Instead of the fusion variable, we pre-
designate winners above and drop all others.

 ev << "@@TCC About to Process Message!@@"
<<'\n';
 int source = msg->par("src");
 ev << "Here's the SFP the Track came from --
> " << source <<'\n';

254

 int track = msg->par("track");
 ev << "Here's the Track it pertains to --> "
<< track <<'\n';

 if (track_list[track] == source)
 {
 ev << "@@TCC Fusing the message!@@" <<
'\n';

 //Note, the actual fusion request is
passed to an internal capsule, clearing the
 //TCC to handle other incoming tracks.
This is modeled by subtracting fusion_time
 //from the fused message's timestamp.
This shows the time delay in the end.
 simtime_t temp = msg->timestamp();
 if (temp>fusion_time)
 {
 temp = temp - fusion_time;
 }

 msg->setTimestamp(temp);

 // change the size to a fused track
size
 msg->setLength(fused_track_size);

 ev << "TCC --> TRC" << '\n';
 // forward the track for writing to the
Track Registry's master track list

 send(msg, "TRCout");
// forwarded_tracks++;
 }
 else //drop the message
 {

255

 ev << "@@TCC Dropping the message!@@"
<< '\n';
 delete msg;
// dropped_tracks++;

 }
 }
 else if (msg->arrivedOn("TRCin"))
 {
 ev << "TrackCorrelationCapsule processing
msg from TRCin" << '\n';
 //note, this causes minimal delay, as the
List Maintenance Capsule is essentially a

 //Sensor Fusion Processor, complete with a
Track List Capsule that has an active and
 //semi-active Track Registry. The new list
goes to the inactive Track Registry
 //then, after the inactive comes on line, it
is given to the formerly active TR.

 //This is an estimated service delay to
switch between the active and semi-active TRs.
 wait(process_time);
 avg_utilization = avg_utilization +
process_time;
 resp_v.record(avg_utilization/simTime());

 delete msg;
 }

 else if (msg->arrivedOn("PHICPSNin"))
 {
 //**Here we process the Abstracted master
track list and send out cues.
 }
 else if (msg->arrivedOn("PHICBMC2in"))
 {
 //We route the target assignment messages
directly to the TRC

256

 send(msg, "TRCout");
 }
 else
 {

 ev << "***ERROR: TCC did not handle
message!***";
 }
 }
}

//---

// file: TRC.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 29 Nov 2003
// The Track Registry Capsule keeps track of the master
track list
// for the SensorNet.
//---

#include "omnetpp.h"

class TRC : public cSimpleModule
{
 Module_Class_Members(TRC,cSimpleModule,16384)
 virtual void activity();

};

Define_Module(TRC);

void TRC::activity()
{
 double delay = parentModule()->par("TrackListDelay");

257

 double time_marker = 0.00000;
 int num_tracks = parentModule()->par("num_Tracks");
 int fused_track_size = parentModule()-
>par("FusedTrackSize");

 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");
 cOutVector resp_v("TRC Utilization");

 ev << "In TRC Module at point 1" << '\n';
 //***************************************

 int track_list[20][100];
 for (int a=0; a<20;a++)
 {
 for (int b=0; b<100;b++)
 {
 track_list[a][b] = -1;
 }
 }

 int target_list[20][100];
 for (int c=0; c<20;c++)
 {
 for (int d=0; d<100;d++)
 {
 target_list[c][d] = -1;
 }

 }

 int x = 0; //This is the counter that keeps the track
and target lists synchronized.

 int *pntrA;
 int *pntrB;

258

 long master_track_list_ptr;
 long target_list_ptr;

 for(;;)

 {

//here's the Master Track List and Target List messages
going out
 if(simTime()>time_marker)
 {
 cMessage *trackmsg = new cMessage(name());
 cMessage *targetmsg = new cMessage(name());

// pntrA = &track_list[a][0];
// master_track_list_ptr = (long) pntrA;
// trackmsg->addPar("mtlp");
// trackmsg->par("mtlp") =
master_track_list_ptr;

 //make the pointer to the current Master
Track List
 char * master_track_list_ptr;
 master_track_list_ptr = (char *)
track_list[a];
 trackmsg->addPar("mtlp");
 trackmsg->par("mtlp") =
master_track_list_ptr;

 //make the pointer to the current Target
List
 char * target_list_ptr;
 target_list_ptr = (char *) target_list[a];
 targetmsg->addPar("tlp");
 targetmsg->par("tlp") = target_list_ptr;

 //send out the Master Track List

259

 cMessage *copy = (cMessage *) trackmsg-
>dup();
 send(copy, "TSCout");
 ev << "Sending Master Track List to TSC with
Track List " << x << '\n';
 send(trackmsg, "TCCout");
 ev << "Sending Master Track List to TCC with
Track List " << x << '\n';

 //send out the Target List
 send(targetmsg, "TSCout");
 ev << "Sending Target List to TSC" << '\n';

 time_marker = simTime()+delay;

 if(x>19)
 {
 ev << "TRC switching to Track and
Target Lists " << x << endl;
 x = 0;

 //Here's where we copy, then move to
the next Master Track List
 for (int m=0; m<100; m++)
 {
 track_list[x][m] =
track_list[20][m];
 }
 //Here's where we copy, then move to
the next Target List
 for (int n=0; n<100; n++)
 {
 track_list[x][n] =
track_list[20][n];
 }
 }
 else

260

 {
 x++;
 ev << "TRC switching to Track and
Target Lists " << x << endl;

 //Here's where we copy, then move to
the next Master Track List
 for (int m=0; m<100; m++)
 {
 track_list[x][m] = track_list[x-
1][m];
 }
 //Here's where we copy, then move to
the next Target List
 for (int n=0; n<100; n++)
 {
 track_list[x][n] = track_list[x-
1][n];
 }
 }
 }

//here's the message receiving/handling area.
 // receive msg (implicit queueing!)
 simtime_t timeout = .01;
 cMessage *msg = receive(timeout);
 // Make sure you put in some delay for handling
of the message
 wait(process_time);

 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 if (msg != NULL)
 {
 if (msg->arrivedOn("TCCin"))
 {

261

 //here's where we need to do the magic
of making the Master Track List and Target List
 if(msg->hasPar("BMC2_wp")) //this
tells us if it's a target assignment message

 {
 ev << "Target Message Received!"
<< '\n';
 int tg = msg->par("target");
 int wp = msg->par("BMC2_wp");
 target_list[x][tg] = wp;
 }
 if(msg->hasPar("track"))

 {
 ev << "Track Message Received!" <<
'\n';
 int source = msg->par("src");
 int trk = msg->par("track");
 track_list[x][trk] = source;
 }
 ev << "Track/Target Message Deleted!"
<< '\n';
 delete msg;
 }
 else
 {
 ev << "ERROR in the TRC Capsule!!!" <<
'\n';
 }

 }
 }
}

//---

// file: TSC.cpp
// author: Joel D. Babbitt

262

// Thesis Work @ NPS
// Date: 29 Nov 2003
// The Track Server Capsule serves the master track list to
all

//---

#include "omnetpp.h"

class TSC : public cSimpleModule
{
 Module_Class_Members(TSC,cSimpleModule,16384)

 virtual void activity();
};

Define_Module(TSC);

void TSC::activity()
{
 double avg_utilization = 0.0;

 double process_time = parentModule()-
>par("Process_Time");
 cOutVector resp_v("TSC Utilization");
 int num_tracks = parentModule()->par("num_Tracks");
 int fused_track_size = parentModule()-
>par("FusedTrackSize");

 ev << "In TSC Module at point 1" << '\n';

 //***************************************

 for(;;)
 {
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message

263

 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 if (msg->arrivedOn("WPICin"))
 {
 //For purposes of this simulation, the
actual shorting is being handled in the SFPIC
 //The reason for this is because the data
structures needed to model it here are beyond
 //my meager programming skills
 send(msg, "Shortout");

 }
 else if (msg->arrivedOn("TRCin"))
 {
 if (msg->hasPar("mtlp"))
 {
 //Here we distribute the Master Track
List to the SFPIC, the BMC2,
 //and an abstracted version to all peer
sensor nets (simulated as
 //a smaller message size).
 cMessage *copy = (cMessage *) msg-
>dup();
 cMessage *abstract = (cMessage *) msg-
>dup();
 copy-
>setLength(num_tracks*fused_track_size);

 send(copy, "TrackListout");
 ev << "TSC Forwarding the Master Track
List to the SFPIC" << '\n';
 abstract-
>setLength(num_tracks*fused_track_size*.5);
 send(abstract, "PSNout");
 ev << "TSC Forwarding the Master Track
List to the Peer Sensor Nets" << '\n';

264

 msg-
>setLength(num_tracks*fused_track_size);
 send(msg, "BMC2out");
 ev << "TSC Forwarding the Master Track
List to the BMC2" << '\n';
 }
 else if (msg->hasPar("tlp"))
 {
 //Here we distribute the Target List to
the BMC2 and SFPIC.
 //As the MTL and TL are really the same
list, this has no size.

 //The size of this message is already
encapsulated into the
 //Master Track List.
 cMessage *copy = (cMessage *) msg-
>dup();
 send(copy, "TrackListout");
 ev << "TSC Forwarding the Target List
to the SFPIC for Shorting Orders" << '\n';

 send(msg, "BMC2out");
 ev << "TSC Forwarding the Target List
to the BMC2" << '\n';
 }
 else
 {
 ev << "ERROR in the TSC!!" << endl;
 }

 }
 }
}

//---

// file: WP.cpp
// author: Joel D. Babbitt

// Thesis Work @ NPS

265

// Date: 3 Dec 2003
// A Weapon Platform that connects to the SensorNet
//---

#include "omnetpp.h"

class WP : public cSimpleModule
{
 Module_Class_Members(WP,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(WP);

void WP::activity()
{

 ev << "In WP Module at point 1" << '\n';
 //***************************************

 double process_time = parentModule()-
>par("Process_Time");
// int BMC2_own_addr = gate("BMC2in")->toGate()-
>index();
// int WPIC_own_addr = gate("out")->toGate()->index();

 ev << "In WP Module at point 2" << '\n';

 //***************************************

 for(;;)
 {
 // receive msg (implicit queueing!)
 cMessage *msg = receive();

266

 // Make sure you put in some delay for handling
of the message
 wait(process_time);

 if (msg->arrivedOn("BMC2in"))
 {
/* int wp = msg->par("BMC2_wp");
 if (BMC2_own_addr == wp)
 {
 msg->addPar("WPIC_wp") = WPIC_own_addr;
 send(msg, "out"); //forward it to the
WPIC.

 }
 else
 {
 ev << "ERROR: Weapon Platform " <<
BMC2_own_addr << " received WP "
 << wp << "'s Firing Order!" <<
'\n';
 }

*/ }
 if (msg->arrivedOn("in"))
 {
 //we need to measure here how long it took
to get a firing solution to the weapon platform
 //this time measurement would include from
SFPIC to WP.
 }

 }
}
//---

// file: WPIC.cpp
// author: Joel D. Babbitt
// Thesis Work @ NPS
// Date: 2 Dec 2003

267

// The Weapon Platform Interface Capsule within the
SensorNet.
//---

#include "omnetpp.h"

class WPIC : public cSimpleModule
{
 Module_Class_Members(WPIC,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(WPIC);

void WPIC::activity()
{
 double avg_utilization = 0.0;
 double process_time = parentModule()-
>par("Process_Time");

 cOutVector resp_v("WPIC utilization");

 ev << "In WPIC Module at point 1" << '\n';
 //***************************************

 for(;;)
 {

 // receive msg (implicit queueing!)
 cMessage *msg = receive();
 // Make sure you put in some delay for handling
of the message
 wait(process_time);
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

268

 if (msg->arrivedOn("WPin"))
 {
 send(msg, "TrackRequestout");

 }
 else if (msg->arrivedOn("TrackRequestin"))
 {
 int dest = msg->par("WPIC_wp");
 send(msg, "WPout", dest);
 }
 }
}

269

APPENDIX G. SIMULATION DATA

Constants
Track Size: 512/1024/1M bits Radar Delay: .5 sec
Radars: 4 IR Delay: 2 sec IR Sensors: 2
Tracked Objects: 50 Capsule Data Rate: 1 Gbps Collaboration Requests: 1
Master Track List BC: 0.1sec Module Track Handling Time: 0.000005 sec
Fusing Time: 0.01 sec

Table 1. Varying Data Rates

270

Table 2. Varying Track Message Sizes

271

Varying Data Rates and Track Message Size

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

5 50 100 500

Number of Tracks

TI
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TL
C

%
Ut

il
iz

at
io

n

Normal Track
Avg Time
(sec)

ColFus Track
Avg Time
(sec)

TLC %

Figure 44. Varying Data Rates and Track Message Sizes

272

Radar Update Rate

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2 1 0.5 0.1 0.01

Radar Update Delay (sec)

Ti
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
Ut

il
iz

at
io

n

Normal Track Avg
Time (sec)
ColFus Track Avg
Time (sec)
TLC %

Figure 45. Ground-based Radar Update Delay

273

Table 3. Ground-based Radar Update Delay

Table 4. Space-Based IR Update Delay

274

Space-Based IR Update Rate

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

5 2 1 0.5 0.1 0.01

IR Update Delay (sec)

Ti
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
Ut

il
iz

at
io

n

Normal Track
Avg Time
(sec)

ColFus Track
Avg Time
(sec)

TLC %

Figure 46. Space-Based IR Update Delay

275

Varying Radar Sensors

0

0.5

1

1.5

2

2.5

3

3.5

4 10 20

of Radars

Ti
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TL
C

%
Ut

il
iz

at
io

n

Normal
Track
Avg Time
(sec)
ColFus
Track
Avg Time
(sec)
TLC %

Figure 47. Varying Number of Ground-based Radar Sensors

276

Table 5. Varying Number of Ground-based Radar Sensors

Table 6. Varying Number of Space-based IR Sensors

277

Varying Space-Based IR Sensors

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 10

of IR Sensors

Ti
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TL
C

%
Ut

il
iz

at
io

n

Normal Track Avg
Time (sec)

ColFus Track Avg
Time (sec)

TLC %

Figure 48. Varying Number of Space-based IR Sensors

278

Collaborative Fusion Requests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 10 100 1000

of Requests from CFC

Ti
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
Ut

il
iz

at
io

n

Normal Track Avg Time
(sec)

ColFus Track Avg Time
(sec)

TLC %

Figure 49. Collaborative Fusion Requests

279

Table 7. Collaborative Fusion Requests

Table 8. Module Processing Time

280

Time for Modules to Handle Tracks

0

5

10

15

20

25

1 2 3

Module Process Time (sec)

Ti
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 %
 U

ti
li

za
ti

on

Normal Track
Avg Time (sec)

ColFus Track
Avg Time (sec)

SIC %

TFC %

TLC %

Figure 50. Module Processing Time

281

Time to Check Track Against Track List

0

2

4

6

8

10

12

14

0.0005 0.001 0.005

Access Time (sec)

Ti
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TL
C

%
Ut

il
iz

ti
on

Normal
Track Avg
Time (sec)

ColFus
Track Avg
Time (sec)

TLC %

Figure 51. Track List Access Time

282

Table 9. Track List Access Time

Table 10. Time to Perform Track Fusion

283

Time to Perform Fusion

0

1

2

3

4

5

6

7

8

9

0.01 0.05 0.1

Fusion Time (sec)

Ti
me

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TL
C

%
Ut

il
iz

at
io

n

Normal Track
Avg Time
(sec)

ColFus Track
Avg Time
(sec)

TFC %

Figure 52. Time to Perform Track Fusion

284

Table 11. Master Track List Broadcast Times

Table 12. Capsule Data Rate

285

LIST OF REFERENCES

A New Paradigm for Requirements Specification and Analysis
of System-of-Systems, Caffall, Dale Scott. and James Bret
Michael. Wirsing, M., Balsamo, S., and Knapp,A., eds.,
Lecture Notes in Computer Science: Proc. Monterey Workshop
2002: Radical Innovations of Software and Systems
Engineering in the Future, Berlin: Springer-Verlag, 2003.

Battle Management, Haim Baruch, AIAA, 2000.

Charting the Seas of Information Technology, The Standish
Group, 1994.

Conceptual Framework Approach for System-of-Systems
Software Developments, NPS Thesis, Dale Scott Caffall, Mar.
2003.

Concurrency Control and Recovery in Database Systems Philip
Bernstien, Vassos Hadzilacos, and Nathan Goodman, Addison-
Wesley, New York, 1987.

Designing Concurrent, Distributed, and Real-Time
Applications with UML, Hassan Gomaa, Addison-Wesley, New
York, 2001.

Distributed Systems Concepts and Design, George Coulouris,
Jean Dollimore, and Tim Kindberg, Addison-Wesley, New York,
2001.

Evolving A Simulation Model Product Line Software
Architecture From Heterogeneous Model Representations, NPS
Ph.D. Dissertation, Kevin J. Greaney, Sept. 2003.

Harnessing the Power of Technology, The Road to Ballistic
Missile Defense From 1987-2007, BMDO, Sept. 2000.

HIPO: A Design Aid and Documentation Technique, IBM
Corporation, Armonk, NY, 1974.

http://www.fas.org/spp/starwars/program/dote99/99sbirs.htm.

http://www.omnetpp.org.

http://www.whitehouse.gov, Press release 13 Dec. 2001.

http://www.whitehouse.gov, Press release 17 Dec. 2002.

286

Managing Software Requirements, Dean Leffingwell, Don
Widrig, Addison-Wesley, 2000.

MDA Exhibit R-2 RDT&E Budget Item Justification (PE
0603889C), DTIC, Feb. 2003.

Naval Forces Capability for Theater Missile Defense, Naval
Studies Board National Research Council, National Academies
Press, 2001.

Office of the Secretary of Defense, SecDef Memo dated 2
Jan. 2002.

Pattern-Oriented Software Architecture: A System of
Patterns, F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, John Wiley & Sons, New York, 1996.

Schaum’s Outline UML, Simon Bennett, John Skelton, and Ken
Lunn, McGraw-Hill, London, 2001.

Test and Evaluation of the Ballistic Missile Defense System
FY 03 Progress Report, James Bret Michael, Phillip Pace,
Man-Tak Shing, Murali Tummala and others, eds., Naval
Postgraduate School, Sep 2003.

The UML Reference Manual, Grady Booch, Jim Rumbaugh, and
Ivar Jacobson, Addison Wesley 1999.

Using UML for Modeling Complex Real Time Systems, Bran
Selic and Jim Rumbaugh, April 1998.

287

BIBLIOGRAPHY

Air, Land, and Sea Application (ALSA) Center. TADIL J,
Introduction to Tactical Digital Information Link J and
Quick Reference Guide. June 2000.
http://www.adtdl.army.mil, Accessed November 2003.

Ballistic Missile Defense Organization. Harnessing the
Power of Technology: The Road to Ballistic Missile Defense
from 1983–2007. September 2000.
http://www.acq.osd.mil/bmdo/bmdolink/pdf/power.pdf,
Accessed November 2003.

Barach, Haim. 2001: Battle Management. Theater Ballistic
Missile Defense, Volume 192, Progress in Astronautics and
Aeronautics. American Institute of Aeronautics and
Astronautics, Inc. 205-217.

Bennett, Simon, John Skelton, and Ken Lunn. Schaum’s
Outline of UML. London: McGraw-Hill, 2001.

Bernstien, Philip, Vassos Hadzilacos, and Nathan Goodman.
Concurrency Control and Recovery in Database Systems. New
York: Addison-Wesley, 1987.

Booch, Grady, Jim Rumbaugh, and Ivar Jacobson, The UML
Reference Manual. New York: Addison-Wesley 1999.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The
Unified Modeling Language User Guide. New York: Addison-
Wesley, 2000.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal. Pattern-Oriented Software Architecture: A System of
Patterns. New York: John Wiley & Sons, 1996.

Caffall, Dale Scott. and James Bret Michael. “A New
Paradigm for Requirements Specification and Analysis of
System-of-Systems.” Wirsing, M., Balsamo, S., and Knapp,
A., eds. Lecture Notes in Computer Science: Proc. Monterey
Workshop 2002: Radical Innovations of Software and Systems
Engin. in the Future. Berlin: Springer-Verlag, 2003. (Also
appeared in Technical Report CS-2002-10, Dipartimento di
Informationrmatica, Università Cà Foscari di Venezia,
Venezia, Italy, September 2002.)

Caffall, Dale Scott. “Conceptual Framework Approach For
Systems-Of-Systems Software Developments.” M.S. Thesis,
Naval Postgraduate School, March 2003.

288

Committee for Naval Forces’ Capability for Theater Missile
Defense, Naval Studies Board, National Research Council.
Naval Forces’ Capability for Theater Missile Defense.
Washington D.C.: National Academy Press, 2001.

Coulouris, George, Jean Dollimore, and Tim Kindberg.
Distributed Systems Concepts and Design, 3rd Ed. New York:
Addison-Wesley, 2001.

Gomaa, Hassan. Designing Concurrent, Distributed, and
Real-Time Applications with UML. New York: Addison-Wesley,
2001.

Greaney, Kevin J. “Evolving A Simulation Model Product
Line Software Architecture From Heterogeneous Model
Representations.” Ph.D. Dissertation, Naval Postgraduate
School, September 2003.

Kulak, Daryl, and Eamonn Guiney. Use Cases Requirements in
Context. New York: ACM Press, 2001.

Leffingwell, Dean, and Don Widrig. Managing Software
Requirements A Unified Approach. New York: Addison-Wesley,
2001.

Michael, James Bret, Phillip Pace, Man-Tak Shing, Murali
Tummala and others, eds., “Test and Evaluation of the
Ballistic Missile Defense System FY 03 Progress Report”,
Naval Postgraduate School, September 2003.

Missile Defense Agency. Lexicon for Sensor Netting
Applications. Washington D.C. February 2003.

Missile Defense Agency. MDA Glossary Version 4.
Washington D.C. November 2003.
http://www.acq.osd.mil/bmdo/bmdolink/html/bmdolink.html,
Accessed November 2003

OMNet++ Community Site. www.omnetpp.org, Accessed December
2003.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. The
Unified Modeling Language Reference Manual. New York:
Addison-Wesley, 1999.

Selic, Bran, and Jim Rumbaugh. Using UML for Modeling
Complex Real Time Systems. April 1998

289

The Standish Group. Charting the Seas of Information
Technology. The Standish Group International. 1994

www.whitehouse.gov, Accessed November 2003.

290

THIS PAGE INTENTIONALLY LEFT BLANK

291

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA

3. Dr. James Bret Michael
Computer Science Department
Naval Postgraduate School
Monterey, CA

4. Dr. Man Tak Shing
Computer Science Department
Naval Postgraduate School
Monterey, CA

5. Dr. Dan Boger
Naval Postgraduate School
Monterey, CA

6. Dr. Peter Denning
Computer Science Department
Naval Postgraduate School
Monterey, CA

7. Dr. Phil Pace
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA

8. Dr. Murali Tummala
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA

9. Mr. Dale Scott Caffall
Missile Defense Agency
Washington, DC

